Enzymatic oxidations in the biosynthesis of complex alkaloids

Wing Ming Chou, Toni M. Kutchan

Research output: Contribution to journalReview articlepeer-review

72 Scopus citations


The biosynthesis of complex alkaloids in plants involves enzymes that, due to high substrate specificity, appear to have evolved solely for a role in secondary metabolism. At least one class of these enzymes, the oxidoreductases, catalyze transformations that are in some cases difficult to chemically mimick with an equivalent stereo- or regiospecificity and yield. Oxidoreductases are frequently catalyzing reactions that result in the formation of parent ring systems, thereby determining the class of alkaloid that a plant will produce. The oxidoreductases of alkaloid formation are a potential target for the biotechnological exploitation of medicinal plants in that they could be used for biomimetic syntheses of alkaloids. Analyzing the molecular genetics of alkaloid biosynthetic oxidations is requisite to eventual commercial application of these enzymes. To this end, a wealth of knowledge has been gained on the biochemistry of select monoterpenoid indole and isoquinoline biosynthetic pathways, and in recent years this has been complemented by molecular genetic analyses. As the nucleotide sequences of the oxidases of alkaloid synthesis become known, consensus sequences specific to select classes of enzymes can be identified. These consensus sequences will potentially facilitate the direct cloning of alkaloid biosynthetic genes without the need to purify the native enzyme for partial amino acid sequence determination or for antibody production prior to cDNA isolation. The current state of our knowledge of the biochemistry and molecular genetics of oxidases involved in alkaloid biosynthesis is reviewed herein.

Original languageEnglish
Pages (from-to)289-300
Number of pages12
JournalPlant Journal
Issue number3
StatePublished - Aug 1998


Dive into the research topics of 'Enzymatic oxidations in the biosynthesis of complex alkaloids'. Together they form a unique fingerprint.

Cite this