TY - JOUR
T1 - Enterotoxigenic Escherichia coli EtpA mediates adhesion between flagella and host cells
AU - Roy, Koushik
AU - Hilliard, George M.
AU - Hamilton, David J.
AU - Luo, Jiwen
AU - Ostmann, Marguerite M.
AU - Fleckenstein, James M.
N1 - Funding Information:
Acknowledgements We thank B. Westerlund-Wikström for supplying anti-flagellar antisera, K. Troughton of the Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, for her assistance with transmission electron microscopy, and L. Boykins of the Integrated Microscopy Center at the University of Memphis for her assistance with scanning electron microscopy. We thank G. Byrne, H. Courtney, J. Dale, S. Dagogo-Jack and T. Strom for reading the manuscript. This research was supported by grants from the National Institutes of Health (National Center for Research Resources) RR16190-05, the Department of Veterans Affairs and funds from the University of Tennessee Microbial Pathogenesis Research Center.
PY - 2009/1/29
Y1 - 2009/1/29
N2 - Adhesion to epithelial cells and flagella-mediated motility are critical virulence traits for many Gram-negative pathogens, including enterotoxigenic Escherichia coli (ETEC), a major cause of diarrhoea in travellers and children in developing countries. Many flagellated pathogens export putative adhesins belonging to the two-partner secretion (TPS) family. However, the actual function of these adhesins remains largely undefined. Here we demonstrate that EtpA, a TPS exoprotein adhesin of enterotoxigenic E. coli, mimics and interacts with highly conserved regions of flagellin, the major subunit of flagella, and that these interactions are critical for adherence and intestinal colonization. Although conserved regions of flagellin are mostly buried in the flagellar shaft, our results suggest that they are at least transiently exposed at the tips of flagella where they capture EtpA adhesin molecules for presentation to eukaryotic receptors. Similarity of EtpA to molecules encoded by other motile pathogens suggests a potential common pattern for bacterial adhesion, whereas participation of conserved regions of flagellin in adherence has implications for development of vaccines for Gram-negative pathogens.
AB - Adhesion to epithelial cells and flagella-mediated motility are critical virulence traits for many Gram-negative pathogens, including enterotoxigenic Escherichia coli (ETEC), a major cause of diarrhoea in travellers and children in developing countries. Many flagellated pathogens export putative adhesins belonging to the two-partner secretion (TPS) family. However, the actual function of these adhesins remains largely undefined. Here we demonstrate that EtpA, a TPS exoprotein adhesin of enterotoxigenic E. coli, mimics and interacts with highly conserved regions of flagellin, the major subunit of flagella, and that these interactions are critical for adherence and intestinal colonization. Although conserved regions of flagellin are mostly buried in the flagellar shaft, our results suggest that they are at least transiently exposed at the tips of flagella where they capture EtpA adhesin molecules for presentation to eukaryotic receptors. Similarity of EtpA to molecules encoded by other motile pathogens suggests a potential common pattern for bacterial adhesion, whereas participation of conserved regions of flagellin in adherence has implications for development of vaccines for Gram-negative pathogens.
UR - http://www.scopus.com/inward/record.url?scp=59049093883&partnerID=8YFLogxK
U2 - 10.1038/nature07568
DO - 10.1038/nature07568
M3 - Article
C2 - 19060885
AN - SCOPUS:59049093883
SN - 0028-0836
VL - 457
SP - 594
EP - 598
JO - Nature
JF - Nature
IS - 7229
ER -