Endothelial cell CD36 optimizes tissue fatty acid uptake

Ni Huiping Son, Debapriya Basu, Dmitri Samovski, Terri A. Pietka, Vivek S. Peche, Florian Willecke, Xiang Fang, Shui Qing Yu, Diego Scerbo, Hye Rim Chang, Fei Sun, Svetlana Bagdasarov, Konstantinos Drosatos, Steve T. Yeh, Adam E. Mullick, Kooresh I. Shoghi, Namrata Gumaste, Kyeong Jin Kim, Lesley Ann Huggins, Tenzin LhakhangNada A. Abumrad, Ira J. Goldberg

Research output: Contribution to journalArticlepeer-review

122 Scopus citations


Movement of circulating fatty acids (FAs) to parenchymal cells requires their transfer across the endothelial cell (EC) barrier. The multiligand receptor cluster of differentiation 36 (CD36) facilitates tissue FA uptake and is expressed in ECs and parenchymal cells such as myocytes and adipocytes. Whether tissue uptake of FAs is dependent on EC or parenchymal cell CD36, or both, is unknown. Using a cell-specific deletion approach, we show that EC, but not parenchymal cell, CD36 deletion increased fasting plasma FAs and postprandial triglycerides. EC-Cd36-KO mice had reduced uptake of radiolabeled long-chain FAs into heart, skeletal muscle, and brown adipose tissue; these uptake studies were replicated using [11C]palmitate PET scans. High-fat diet-fed EC-CD36-deficient mice had improved glucose tolerance and insulin sensitivity. Both EC and cardiomyocyte (CM) deletion of CD36 reduced heart lipid droplet accumulation after fasting, but CM deletion did not affect heart glucose or FA uptake. Expression in the heart of several genes modulating glucose metabolism and insulin action increased with EC-CD36 deletion but decreased with CM deletion. In conclusion, EC CD36 acts as a gatekeeper for parenchymal cell FA uptake, with important downstream effects on glucose utilization and insulin action.

Original languageEnglish
Pages (from-to)4329-4342
Number of pages14
JournalJournal of Clinical Investigation
Issue number10
StatePublished - Oct 1 2018


Dive into the research topics of 'Endothelial cell CD36 optimizes tissue fatty acid uptake'. Together they form a unique fingerprint.

Cite this