TY - JOUR
T1 - Emerging advances of in vivo detection of chronic traumatic encephalopathy and traumatic brain injury
AU - Dallmeier, Julian D.
AU - Meysami, Somayeh
AU - Merrill, David A.
AU - Raji, Cyrus A.
N1 - Publisher Copyright:
© 2019 The Authors.
PY - 2019
Y1 - 2019
N2 - Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder that is of epidemic proportions in contact sports athletes and is linked to subconcussive and concussive repetitive head impacts (RHI). Although postmortem analysis is currently the only confirmatory method to diagnose CTE, there has been progress in early detection techniques of fluid biomarkers as well as in advanced neuroimaging techniques. Specifically, promising new methods of diffusion MRI and radionucleotide PET scans could aid in the early detection of CTE. The authors examine early detection methods focusing on various neuroimaging techniques. Advances in structural and diffusion MRI have demonstrated the ability to measure volumetric and white matter abnormalities associated with CTE. Recent studies using radionucleotides such as flortaucipir and 18F-FDDNP have shown binding patterns that are consistent with the four stages of neurofibrillary tangle (NFT) distribution postmortem. Additional research undertakings focusing on fMRI, MR spectroscopy, susceptibility-weighted imaging, and singlephoton emission CT are also discussed as are advanced MRI methods such as diffusiontensor imaging and arterial spin labeled. Neuroimaging is fast becoming a key instrument in early detection and could prove essential for CTE quantification. This review explores a global approach to in vivo early detection. Limited data of in vivo CTE biomarkers with postmortem confirmation are available. While some data exist, they are limited by selection bias. It is unlikely that a single test will be sufficient to properly diagnosis and distinguish CTE from other neurodegenerative diseases such as Alzheimer disease or Frontotemporal Dementia. However, with a combination of fluid biomarkers, neuroimaging, and genetic testing, early detection may become possible.
AB - Chronic traumatic encephalopathy (CTE) is a neurodegenerative disorder that is of epidemic proportions in contact sports athletes and is linked to subconcussive and concussive repetitive head impacts (RHI). Although postmortem analysis is currently the only confirmatory method to diagnose CTE, there has been progress in early detection techniques of fluid biomarkers as well as in advanced neuroimaging techniques. Specifically, promising new methods of diffusion MRI and radionucleotide PET scans could aid in the early detection of CTE. The authors examine early detection methods focusing on various neuroimaging techniques. Advances in structural and diffusion MRI have demonstrated the ability to measure volumetric and white matter abnormalities associated with CTE. Recent studies using radionucleotides such as flortaucipir and 18F-FDDNP have shown binding patterns that are consistent with the four stages of neurofibrillary tangle (NFT) distribution postmortem. Additional research undertakings focusing on fMRI, MR spectroscopy, susceptibility-weighted imaging, and singlephoton emission CT are also discussed as are advanced MRI methods such as diffusiontensor imaging and arterial spin labeled. Neuroimaging is fast becoming a key instrument in early detection and could prove essential for CTE quantification. This review explores a global approach to in vivo early detection. Limited data of in vivo CTE biomarkers with postmortem confirmation are available. While some data exist, they are limited by selection bias. It is unlikely that a single test will be sufficient to properly diagnosis and distinguish CTE from other neurodegenerative diseases such as Alzheimer disease or Frontotemporal Dementia. However, with a combination of fluid biomarkers, neuroimaging, and genetic testing, early detection may become possible.
UR - http://www.scopus.com/inward/record.url?scp=85071253996&partnerID=8YFLogxK
U2 - 10.1259/bjr.20180925
DO - 10.1259/bjr.20180925
M3 - Review article
C2 - 31287716
AN - SCOPUS:85071253996
SN - 0007-1285
VL - 92
JO - British Journal of Radiology
JF - British Journal of Radiology
IS - 1101
M1 - 20180925
ER -