TY - JOUR
T1 - Elucidation of a Self-Sustaining Cycle in Escherichia coli l -Serine Biosynthesis That Results in the Conservation of the Coenzyme, NAD+
AU - Grant, Gregory A.
N1 - Funding Information:
*Department of Developmental Biology, Box 8103, Washington University School of Medicine, St. Louis, MO 63110. Phone: 314-362-3367. Fax: 314-362-4698. E-mail: [email protected]. ORCID Gregory A. Grant: 0000-0003-0224-9742 Funding Funding was provided by the Department of Developmental Biology, Washington University School of Medicine. Notes The author declares no competing financial interest.
Publisher Copyright:
© 2018 American Chemical Society.
PY - 2018/3/20
Y1 - 2018/3/20
N2 - The equilibrium of the reaction catalyzed by d-3-phosphoglycerate dehydrogenase (PGDH), the first enzyme in the l-serine biosynthetic pathway, is far in the direction away from serine synthesis. As such, the enzyme is usually assayed in this direction. To easily assay it in the direction of l-serine synthesis, it can be coupled to the next enzyme in the pathway, phosphoserine aminotransferase (PSAT), with the activity monitored by the conversion of NAD+ to NADH by PGDH. However, when PGDHs from several different species were coupled to PSAT, it was found that one of them, ecPGDH, conserves the coenzyme in the production of l-serine by utilizing an intrinsic cycle of NAD+/NADH interconversion coupled with the conversion of α-ketoglutarate (αKG) to α-hydroxyglutarate. Furthermore, the cycle can be maintained by production of αKG by the second enzyme in the pathway, PSAT, and does not require any additional enzymes. This is not the case for PGDH from another bacterial source, Mycobacterium tuberculosis, and a mammalian source, human liver, where net consumption of NAD+ occurs. Both NAD+ and NADH appear to remain tightly bound to ecPGDH during the cycle, effectively removing a requirement for the presence of an exogenous coenzyme pool to maintain the pathway and significantly reducing the energy requirement needed to maintain this major metabolic pathway.
AB - The equilibrium of the reaction catalyzed by d-3-phosphoglycerate dehydrogenase (PGDH), the first enzyme in the l-serine biosynthetic pathway, is far in the direction away from serine synthesis. As such, the enzyme is usually assayed in this direction. To easily assay it in the direction of l-serine synthesis, it can be coupled to the next enzyme in the pathway, phosphoserine aminotransferase (PSAT), with the activity monitored by the conversion of NAD+ to NADH by PGDH. However, when PGDHs from several different species were coupled to PSAT, it was found that one of them, ecPGDH, conserves the coenzyme in the production of l-serine by utilizing an intrinsic cycle of NAD+/NADH interconversion coupled with the conversion of α-ketoglutarate (αKG) to α-hydroxyglutarate. Furthermore, the cycle can be maintained by production of αKG by the second enzyme in the pathway, PSAT, and does not require any additional enzymes. This is not the case for PGDH from another bacterial source, Mycobacterium tuberculosis, and a mammalian source, human liver, where net consumption of NAD+ occurs. Both NAD+ and NADH appear to remain tightly bound to ecPGDH during the cycle, effectively removing a requirement for the presence of an exogenous coenzyme pool to maintain the pathway and significantly reducing the energy requirement needed to maintain this major metabolic pathway.
UR - http://www.scopus.com/inward/record.url?scp=85044184688&partnerID=8YFLogxK
U2 - 10.1021/acs.biochem.8b00074
DO - 10.1021/acs.biochem.8b00074
M3 - Article
C2 - 29494135
AN - SCOPUS:85044184688
SN - 0006-2960
VL - 57
SP - 1798
EP - 1806
JO - Biochemistry
JF - Biochemistry
IS - 11
ER -