TY - JOUR
T1 - Electrophysiological correlates of behavioural changes in vigilance in vegetative state and minimally conscious state
AU - Landsness, Eric
AU - Bruno, Marie Aurélie
AU - Noirhomme, Quentin
AU - Riedner, Brady
AU - Gosseries, Olivia
AU - Schnakers, Caroline
AU - Massimini, Marcello
AU - Laureys, Steven
AU - Tononi, Giulio
AU - Boly, Mélanie
N1 - Funding Information:
The Belgian Fonds National de la Recherche Scientifique (FNRS); European Commission (Mindbridge, DISCOS, CATIA and DECODER); Mind Science Foundation; James McDonnell Foundation, French Speaking Community Concerted Research Action (ARC 06/11-340); Fondation Médicale Reine Elisabeth; Fonds Léon Frédéricq and the National Institute of Health; ARC 06/11-340 (to A.V.); ECL by NIMH F30MH082601; M.-A.B. and O.G. are Research Fellows, M.B. and Q.N. are Postdoctoral Fellows and S.L. is Senior Research Associates at the FNRS; G.T. is supported by NIMH 5T20MH077967 and the NIH Director’s Award DP1 OD000579.
PY - 2011/8
Y1 - 2011/8
N2 - The existence of normal sleep in patients in a vegetative state is still a matter of debate. Previous electrophysiological sleep studies in patients with disorders of consciousness did not differentiate patients in a vegetative state from patients in a minimally conscious state. Using high-density electroencephalographic sleep recordings, 11 patients with disorders of consciousness (six in a minimally conscious state, five in a vegetative state) were studied to correlate the electrophysiological changes associated with sleep to behavioural changes in vigilance (sustained eye closure and muscle inactivity). All minimally conscious patients showed clear electroencephalographic changes associated with decreases in behavioural vigilance. In the five minimally conscious patients showing sustained behavioural sleep periods, we identified several electrophysiological characteristics typical of normal sleep. In particular, all minimally conscious patients showed an alternating non-rapid eye movement/rapid eye movement sleep pattern and a homoeostatic decline of electroencephalographic slow wave activity through the night. In contrast, for most patients in a vegetative state, while preserved behavioural sleep was observed, the electroencephalographic patterns remained virtually unchanged during periods with the eyes closed compared to periods of behavioural wakefulness (eyes open and muscle activity). No slow wave sleep or rapid eye movement sleep stages could be identified and no homoeostatic regulation of sleep-related slow wave activity was observed over the night-time period. In conclusion, we observed behavioural, but no electrophysiological, sleep wake patterns in patients in a vegetative state, while there were near-to-normal patterns of sleep in patients in a minimally conscious state. These results shed light on the relationship between sleep electrophysiology and the level of consciousness in severely brain-damaged patients. We suggest that the study of sleep and homoeostatic regulation of slow wave activity may provide a complementary tool for the assessment of brain function in minimally conscious state and vegetative state patients.
AB - The existence of normal sleep in patients in a vegetative state is still a matter of debate. Previous electrophysiological sleep studies in patients with disorders of consciousness did not differentiate patients in a vegetative state from patients in a minimally conscious state. Using high-density electroencephalographic sleep recordings, 11 patients with disorders of consciousness (six in a minimally conscious state, five in a vegetative state) were studied to correlate the electrophysiological changes associated with sleep to behavioural changes in vigilance (sustained eye closure and muscle inactivity). All minimally conscious patients showed clear electroencephalographic changes associated with decreases in behavioural vigilance. In the five minimally conscious patients showing sustained behavioural sleep periods, we identified several electrophysiological characteristics typical of normal sleep. In particular, all minimally conscious patients showed an alternating non-rapid eye movement/rapid eye movement sleep pattern and a homoeostatic decline of electroencephalographic slow wave activity through the night. In contrast, for most patients in a vegetative state, while preserved behavioural sleep was observed, the electroencephalographic patterns remained virtually unchanged during periods with the eyes closed compared to periods of behavioural wakefulness (eyes open and muscle activity). No slow wave sleep or rapid eye movement sleep stages could be identified and no homoeostatic regulation of sleep-related slow wave activity was observed over the night-time period. In conclusion, we observed behavioural, but no electrophysiological, sleep wake patterns in patients in a vegetative state, while there were near-to-normal patterns of sleep in patients in a minimally conscious state. These results shed light on the relationship between sleep electrophysiology and the level of consciousness in severely brain-damaged patients. We suggest that the study of sleep and homoeostatic regulation of slow wave activity may provide a complementary tool for the assessment of brain function in minimally conscious state and vegetative state patients.
KW - EEG
KW - consciousness
KW - minimally conscious state
KW - sleep
KW - vegetative state
UR - http://www.scopus.com/inward/record.url?scp=80051988061&partnerID=8YFLogxK
U2 - 10.1093/brain/awr152
DO - 10.1093/brain/awr152
M3 - Article
C2 - 21841201
AN - SCOPUS:80051988061
SN - 0006-8950
VL - 134
SP - 2222
EP - 2232
JO - Brain
JF - Brain
IS - 8
ER -