1 Scopus citations

Abstract

We develop a computational framework for estimating simultaneously mechanical properties (active stress, passive elasticities, and mechanical activation time) and electrical properties (current density and electrical activation time.) First, we present a method for estimating the mechanical properties, active stress and passive elasticity modulus, of the in vivo heart using magnetic resonance imaging (MRI) tissue-tagging and intra-ventricular pressure measurements. Next, we present an algorithm for estimating the current density of the heart using electrocardiography (ECG) and magnetocardiography (MCG) sensor arrays. Finally, we present an inverse electro-mechanical model based on the excitation-contraction coupling and dynamic analysis which includes inertial forces and moving mesh. The proposed model has significant potential for studying the coupling effects in the whole heart.

Original languageEnglish
Pages (from-to)1006-1009
Number of pages4
JournalAnnual International Conference of the IEEE Engineering in Medicine and Biology - Proceedings
Volume26 II
StatePublished - 2004
EventConference Proceedings - 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2004 - San Francisco, CA, United States
Duration: Sep 1 2004Sep 5 2004

Fingerprint

Dive into the research topics of 'Electro-mechanical imaging of the heart using tagged MRI and ECG/MCG arrays'. Together they form a unique fingerprint.

Cite this