Elastin-insufficient mice show normal cardiovascular remodeling in 2K1C hypertension despite higher baseline pressure and unique cardiovascular architecture

Jessica E. Wagenseil, Russell H. Knutsen, Dean Y. Li, Robert P. Mecham

Research output: Contribution to journalArticlepeer-review

20 Scopus citations

Abstract

Mice heterozygous for the elastin gene (ELN+/-) show unique cardiovascular properties, including increased blood pressure and smaller, thinner arteries with an increased number of lamellar units. Some of these properties are also observed in humans with supravalvular aortic stenosis, a disease caused by functional heterozygosity of the elastin gene. The arterial geometry in ELN+/- mice is contrary to the increased thickness that would be expected in an animal demonstrating hypertensive remodeling. To determine whether this is due to a decreased capability for cardiovascular remodeling or to a novel adaptation of the ELN+/- cardiovascular system, we increased blood pressure in adult ELN+/+ and ELN +/- mice using the two-kidney, one-clip Goldblatt model of hypertension. Successfully clipped mice have a systolic pressure increase of at least 15 mmHg over shamoperated animals. ELN+/+ and ELN +/--clipped mice show significant increases over sham-operated mice in cardiac weight, arterial thickness, and arterial cross-sectional area with no changes in lamellar number. There are no significant differences in most mechanical properties with clipping in either genotype. These results indicate that ELN+/+ and ELN+/- hearts and arteries remodel similarly in response to adult induced hypertension. Therefore, the cardiovascular properties of ELN+/- mice are likely due to developmental remodeling in response to altered hemodynamics and reduced elastin levels.

Original languageEnglish
Pages (from-to)H574-H582
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume293
Issue number1
DOIs
StatePublished - Jul 2007

Keywords

  • Arterial mechanics
  • Cardiac hypertrophy
  • Extracellular matrix
  • High blood pressure
  • Two-kidney, one-clip hypertension

Fingerprint

Dive into the research topics of 'Elastin-insufficient mice show normal cardiovascular remodeling in 2K1C hypertension despite higher baseline pressure and unique cardiovascular architecture'. Together they form a unique fingerprint.

Cite this