TY - JOUR
T1 - Elastin insufficiency predisposes to elevated pulmonary circulatory pressures through changes in elastic artery structure
AU - Shifren, Adrian
AU - Durmowicz, Anthony G.
AU - Knutsen, Russell H.
AU - Faury, Gilles
AU - Mecham, Robert P.
PY - 2008/11
Y1 - 2008/11
N2 - Elastin is a major structural component of large elastic arteries and a principal determinant of arterial biomechanical properties. Elastin loss-of-function mutations in humans have been linked to the autosomal-dominant disease supravalvular aortic stenosis, which is characterized by stenotic lesions in both the systemic and pulmonary circulations. To better understand how elastin insufficiency influences the pulmonary circulation, we evaluated pulmonary cardiovascular physiology in a unique set of transgenic and knockout mice with graded vascular elastin dosage (range 45-120% of wild type). The central pulmonary arteries of elastin-insufficient mice had smaller internal diameters (P < 0.0001), thinner walls (P = 0.002), and increased opening angles (P < 0.002) compared with wild-type controls. Pulmonary circulatory pressures, measured by right ventricular catheterization, were significantly elevated in elastin-insufficient mice (P < 0.0001) and showed an inverse correlation with elastin level. Although elastin-insufficient animals exhibited mild to moderate right ventricular hypertrophy (P = 0.0001) and intrapulmonary vascular remodeling, the changes were less than expected, given the high right ventricular pressures, and were attenuated compared with those seen in hypoxia-induced models of pulmonary arterial hypertension. The absence of extensive pathological cardiac remodeling at the high pressures in these animals suggests a developmental adaptation designed to maintain right-sided cardiac output in a vascular system with altered elastin content.
AB - Elastin is a major structural component of large elastic arteries and a principal determinant of arterial biomechanical properties. Elastin loss-of-function mutations in humans have been linked to the autosomal-dominant disease supravalvular aortic stenosis, which is characterized by stenotic lesions in both the systemic and pulmonary circulations. To better understand how elastin insufficiency influences the pulmonary circulation, we evaluated pulmonary cardiovascular physiology in a unique set of transgenic and knockout mice with graded vascular elastin dosage (range 45-120% of wild type). The central pulmonary arteries of elastin-insufficient mice had smaller internal diameters (P < 0.0001), thinner walls (P = 0.002), and increased opening angles (P < 0.002) compared with wild-type controls. Pulmonary circulatory pressures, measured by right ventricular catheterization, were significantly elevated in elastin-insufficient mice (P < 0.0001) and showed an inverse correlation with elastin level. Although elastin-insufficient animals exhibited mild to moderate right ventricular hypertrophy (P = 0.0001) and intrapulmonary vascular remodeling, the changes were less than expected, given the high right ventricular pressures, and were attenuated compared with those seen in hypoxia-induced models of pulmonary arterial hypertension. The absence of extensive pathological cardiac remodeling at the high pressures in these animals suggests a developmental adaptation designed to maintain right-sided cardiac output in a vascular system with altered elastin content.
KW - Elastin
KW - Mechanics
KW - Pulmonary hypertension
KW - Remodeling
UR - http://www.scopus.com/inward/record.url?scp=57349156578&partnerID=8YFLogxK
U2 - 10.1152/japplphysiol.90563.2008
DO - 10.1152/japplphysiol.90563.2008
M3 - Article
C2 - 18772328
AN - SCOPUS:57349156578
SN - 0161-7567
VL - 105
SP - 1610
EP - 1619
JO - Journal of Applied Physiology
JF - Journal of Applied Physiology
IS - 5
ER -