Ehrlich Tumor Induces TRPV1-Dependent Evoked and Non-Evoked Pain-like Behavior in Mice

Mariana M. Bertozzi, Telma Saraiva-Santos, Tiago H. Zaninelli, Felipe A. Pinho-Ribeiro, Victor Fattori, Larissa Staurengo-Ferrari, Camila R. Ferraz, Talita P. Domiciano, Cassia Calixto-Campos, Sergio M. Borghi, Ana C. Zarpelon, Thiago M. Cunha, Rubia Casagrande, Waldiceu A. Verri

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

We standardized a model by injecting Ehrlich tumor cells into the paw to evaluate cancer pain mechanisms and pharmacological treatments. Opioid treatment, but not cyclooxygenase inhibitor or tricyclic antidepressant treatments reduces Ehrlich tumor pain. To best use this model for drug screening it is essential to understand its pathophysiological mechanisms. Herein, we investigated the contribution of the transient receptor potential cation channel subfamily V member 1 (TRPV1) in the Ehrlich tumor-induced pain model. Dorsal root ganglia (DRG) neurons from the Ehrlich tumor mice presented higher activity (calcium levels using fluo-4 fluorescent probe) and an increased response to capsaicin (TRPV1 agonist) than the saline-injected animals (p < 0.05). We also observed diminished mechanical (electronic von Frey) and thermal (hot plate) hyperalgesia, paw flinching, and normalization of weight distribution imbalance in TRPV1 deficient mice (p < 0.05). On the other hand, TRPV1 deficiency did not alter paw volume or weight, indicating no significant alteration in tumor growth. Intrathecal injection of AMG9810 (TRPV1 antagonist) reduced ongoing Ehrlich tumor-triggered mechanical and thermal hyperalgesia (p < 0.05). Therefore, the contribution of TRPV1 to Ehrlich tumor pain behavior was revealed by genetic and pharmacological approaches, thus, supporting the use of this model to investigate TRPV1-targeting therapies for the treatment of cancer pain.

Original languageEnglish
Article number1247
JournalBrain Sciences
Volume12
Issue number9
DOIs
StatePublished - Sep 2022

Keywords

  • AMG9810
  • Ehrlich tumor
  • TRPV1
  • calcium imaging
  • cancer pain
  • dorsal root ganglia
  • mechanical hyperalgesia
  • nociception
  • pain
  • thermal hyperalgesia

Fingerprint

Dive into the research topics of 'Ehrlich Tumor Induces TRPV1-Dependent Evoked and Non-Evoked Pain-like Behavior in Mice'. Together they form a unique fingerprint.

Cite this