TY - JOUR
T1 - Efficient nonmyopic batch active search
AU - Jiang, Shali
AU - Malkomes, Gustavo
AU - Abbott, Matthew
AU - Moseley, Benjamin
AU - Garnett, Roman
N1 - Publisher Copyright:
© 2018 Curran Associates Inc..All rights reserved.
PY - 2018
Y1 - 2018
N2 - Active search is a learning paradigm for actively identifying as many members of a given class as possible. A critical target scenario is high-throughput screening for scientific discovery, such as drug or materials discovery. In these settings, specialized instruments can often evaluate multiple points simultaneously; however, all existing work on active search focuses on sequential acquisition. We bridge this gap, addressing batch active search from both the theoretical and practical perspective. We first derive the Bayesian optimal policy for this problem, then prove a lower bound on the performance gap between sequential and batch optimal policies: the “cost of parallelization.” We also propose novel, efficient batch policies inspired by state-of-the-art sequential policies, and develop an aggressive pruning technique that can dramatically speed up computation. We conduct thorough experiments on data from three application domains: a citation network, material science, and drug discovery, testing all proposed policies with a wide range of batch sizes. Our results demonstrate that the empirical performance gap matches our theoretical bound, that nonmyopic policies usually significantly outperform myopic alternatives, and that diversity is an important consideration for batch policy design.
AB - Active search is a learning paradigm for actively identifying as many members of a given class as possible. A critical target scenario is high-throughput screening for scientific discovery, such as drug or materials discovery. In these settings, specialized instruments can often evaluate multiple points simultaneously; however, all existing work on active search focuses on sequential acquisition. We bridge this gap, addressing batch active search from both the theoretical and practical perspective. We first derive the Bayesian optimal policy for this problem, then prove a lower bound on the performance gap between sequential and batch optimal policies: the “cost of parallelization.” We also propose novel, efficient batch policies inspired by state-of-the-art sequential policies, and develop an aggressive pruning technique that can dramatically speed up computation. We conduct thorough experiments on data from three application domains: a citation network, material science, and drug discovery, testing all proposed policies with a wide range of batch sizes. Our results demonstrate that the empirical performance gap matches our theoretical bound, that nonmyopic policies usually significantly outperform myopic alternatives, and that diversity is an important consideration for batch policy design.
UR - http://www.scopus.com/inward/record.url?scp=85064806542&partnerID=8YFLogxK
M3 - Conference article
AN - SCOPUS:85064806542
SN - 1049-5258
VL - 2018-December
SP - 1099
EP - 1109
JO - Advances in Neural Information Processing Systems
JF - Advances in Neural Information Processing Systems
T2 - 32nd Conference on Neural Information Processing Systems, NeurIPS 2018
Y2 - 2 December 2018 through 8 December 2018
ER -