TY - JOUR
T1 - Efficient gene transfer to kidney mesenchymal cells using a synthetic adeno-associated viral vector
AU - Ikeda, Yoichiro
AU - Sun, Zhao
AU - Ru, Xiao
AU - Vandenberghe, Luk H.
AU - Humphreys, Benjamin D.
N1 - Publisher Copyright:
Copyright © 2018 by the American Society of Nephrology.
PY - 2018/9
Y1 - 2018/9
N2 - Background After injury, mesenchymal progenitors in the kidney interstitium differentiate into myofibroblasts, cells that have a critical role in kidney fibrogenesis. The ability to deliver genetic material to myofibroblast progenitors could allow new therapeutic approaches to treat kidney fibrosis. Preclinical and clinical studies show that adeno-associated viruses (AAVs) efficiently and safely transduce various tissue targets in vivo; however, protocols for transduction of kidney mesenchymal cells have not been established. Methods We evaluated the transduction profiles of various pseudotyped AAV vectors expressing either GFP or Cre recombinase reporters in mouse kidney and human kidney organoids. Results Of the six AAVs tested, a synthetic AAV called Anc80 showed specific and high-efficiency transduction of kidney stroma and mesangial cells. We characterized the cell specificity, dose dependence, and expression kinetics and showed the efficacy of this approach by knocking out Gli2 from kidney mesenchymal cells by injection of Anc80-Cre virus into either homozygous or heterozygous Gli2-floxed mice. After unilateral ureteral obstruction, the homozygous Gli2-floxed mice had less fibrosis than the Gli2 heterozygotes had. We observed the same antifibrotic effect in b-catenin-floxed mice injected with Anc80-Cre virus before obstructive injury, strongly supporting a central role for canonical Wnt signaling in kidney myofibroblast activation. Finally, we showed that the Anc80 synthetic virus can transduce the mesenchymal lineage in human kidney organoids. Conclusions These studies establish a novel method for inducible knockout of floxed genes in mouse mesangium, pericytes, and perivascular fibroblasts and are the foundation for future gene therapy approaches to treat kidney fibrosis.
AB - Background After injury, mesenchymal progenitors in the kidney interstitium differentiate into myofibroblasts, cells that have a critical role in kidney fibrogenesis. The ability to deliver genetic material to myofibroblast progenitors could allow new therapeutic approaches to treat kidney fibrosis. Preclinical and clinical studies show that adeno-associated viruses (AAVs) efficiently and safely transduce various tissue targets in vivo; however, protocols for transduction of kidney mesenchymal cells have not been established. Methods We evaluated the transduction profiles of various pseudotyped AAV vectors expressing either GFP or Cre recombinase reporters in mouse kidney and human kidney organoids. Results Of the six AAVs tested, a synthetic AAV called Anc80 showed specific and high-efficiency transduction of kidney stroma and mesangial cells. We characterized the cell specificity, dose dependence, and expression kinetics and showed the efficacy of this approach by knocking out Gli2 from kidney mesenchymal cells by injection of Anc80-Cre virus into either homozygous or heterozygous Gli2-floxed mice. After unilateral ureteral obstruction, the homozygous Gli2-floxed mice had less fibrosis than the Gli2 heterozygotes had. We observed the same antifibrotic effect in b-catenin-floxed mice injected with Anc80-Cre virus before obstructive injury, strongly supporting a central role for canonical Wnt signaling in kidney myofibroblast activation. Finally, we showed that the Anc80 synthetic virus can transduce the mesenchymal lineage in human kidney organoids. Conclusions These studies establish a novel method for inducible knockout of floxed genes in mouse mesangium, pericytes, and perivascular fibroblasts and are the foundation for future gene therapy approaches to treat kidney fibrosis.
UR - http://www.scopus.com/inward/record.url?scp=85052559516&partnerID=8YFLogxK
U2 - 10.1681/ASN.2018040426
DO - 10.1681/ASN.2018040426
M3 - Article
C2 - 29976586
AN - SCOPUS:85052559516
SN - 1046-6673
VL - 29
SP - 2287
EP - 2297
JO - Journal of the American Society of Nephrology
JF - Journal of the American Society of Nephrology
IS - 9
ER -