TY - JOUR
T1 - Effects of cytosine methylation on DNA morphology
T2 - An atomic force microscopy study
AU - Cassina, V.
AU - Manghi, M.
AU - Salerno, D.
AU - Tempestini, A.
AU - Iadarola, V.
AU - Nardo, L.
AU - Brioschi, S.
AU - Mantegazza, F.
N1 - Funding Information:
We thank D. Barisani and A. Cinti for useful advice regarding the realization of the DNA constructs. This research was supported in part by Fondo di Ateneo per la Ricerca of the University of Milano-Bicocca .
Publisher Copyright:
© 2015 Elsevier B.V.
PY - 2016/1
Y1 - 2016/1
N2 - Methylation is one of the most important epigenetic mechanisms in eukaryotes. As a consequence of cytosine methylation, the binding of proteins that are implicated in transcription to gene promoters is severely hindered, which results in gene regulation and, eventually, gene silencing. To date, the mechanisms by which methylation biases the binding affinities of proteins to DNA are not fully understood; however, it has been proposed that changes in double-strand conformations, such as stretching, bending, and over-twisting, as well as local variations in DNA stiffness/flexibility may play a role. The present work investigates, at the single molecule level, the morphological consequences of DNA methylation in vitro. By tracking the atomic force microscopy images of single DNA molecules, we characterize DNA conformations pertaining to two different degrees of methylation. In particular, we observe that methylation induces no relevant variations in DNA contour lengths, but produces measurable incremental changes in persistence lengths. Furthermore, we observe that for the methylated chains, the statistical distribution of angles along the DNA coordinate length is characterized by a double exponential decay, in agreement with what is predicted for polyelectrolytes. The results reported herein support the claim that the biological consequences of the methylation process, specifically difficulties in protein-DNA binding, are at least partially due to DNA conformation modifications.
AB - Methylation is one of the most important epigenetic mechanisms in eukaryotes. As a consequence of cytosine methylation, the binding of proteins that are implicated in transcription to gene promoters is severely hindered, which results in gene regulation and, eventually, gene silencing. To date, the mechanisms by which methylation biases the binding affinities of proteins to DNA are not fully understood; however, it has been proposed that changes in double-strand conformations, such as stretching, bending, and over-twisting, as well as local variations in DNA stiffness/flexibility may play a role. The present work investigates, at the single molecule level, the morphological consequences of DNA methylation in vitro. By tracking the atomic force microscopy images of single DNA molecules, we characterize DNA conformations pertaining to two different degrees of methylation. In particular, we observe that methylation induces no relevant variations in DNA contour lengths, but produces measurable incremental changes in persistence lengths. Furthermore, we observe that for the methylated chains, the statistical distribution of angles along the DNA coordinate length is characterized by a double exponential decay, in agreement with what is predicted for polyelectrolytes. The results reported herein support the claim that the biological consequences of the methylation process, specifically difficulties in protein-DNA binding, are at least partially due to DNA conformation modifications.
KW - Atomic force microscopy (AFM)
KW - DNA methylation
KW - Persistence length
UR - http://www.scopus.com/inward/record.url?scp=84973409278&partnerID=8YFLogxK
U2 - 10.1016/j.bbagen.2015.10.006
DO - 10.1016/j.bbagen.2015.10.006
M3 - Article
C2 - 26475643
AN - SCOPUS:84973409278
SN - 0304-4165
VL - 1860
SP - 1
EP - 7
JO - BBA - General Subjects
JF - BBA - General Subjects
IS - 1
ER -