TY - JOUR
T1 - Effective-pair interactions in transition-metal alloys
T2 - A supercell total-energy approach
AU - Carlsson, A. E.
PY - 1987
Y1 - 1987
N2 - A new method is described for obtaining effective pair interactions (EPI) in transition-metal alloys from density-functional-theory total-energy calculations for supercell compounds. The calculated total energies are used to obtain explicit concentration-independent cluster interactions, through an inversion scheme [J. W. D. Connolly and A. R. Williams, Phys. Rev. B 27, 5168 (1983)]. Using a truncated form for the higher-order interatomic correlation functions, the cluster interactions are resummed into concentration-dependent EPI. The EPI are interpreted within the established perturbation-theoretic framework. The method offers a treatment of electron-electron interactions that is more accurate than in existing perturbative methods, although the long-ranged oscillations in the EPI are much more difficult to obtain. Furthermore, the method can be used with density-functional calculations which supersede the muffin-tin approximation, and can generate a variety of types of EPI depending upon the particular truncation scheme employed. Results are presented for the Ni-Al and Nb-Y systems. In Ni-Al the EPI is strongly concentration dependent, with the ordering tendency much stronger at the Ni-rich end. The elastic strain energy contributes significantly to the ordering energy. In Nb-Y the EPI favors phase separation most strongly at the Nb-rich end of the phase diagram.
AB - A new method is described for obtaining effective pair interactions (EPI) in transition-metal alloys from density-functional-theory total-energy calculations for supercell compounds. The calculated total energies are used to obtain explicit concentration-independent cluster interactions, through an inversion scheme [J. W. D. Connolly and A. R. Williams, Phys. Rev. B 27, 5168 (1983)]. Using a truncated form for the higher-order interatomic correlation functions, the cluster interactions are resummed into concentration-dependent EPI. The EPI are interpreted within the established perturbation-theoretic framework. The method offers a treatment of electron-electron interactions that is more accurate than in existing perturbative methods, although the long-ranged oscillations in the EPI are much more difficult to obtain. Furthermore, the method can be used with density-functional calculations which supersede the muffin-tin approximation, and can generate a variety of types of EPI depending upon the particular truncation scheme employed. Results are presented for the Ni-Al and Nb-Y systems. In Ni-Al the EPI is strongly concentration dependent, with the ordering tendency much stronger at the Ni-rich end. The elastic strain energy contributes significantly to the ordering energy. In Nb-Y the EPI favors phase separation most strongly at the Nb-rich end of the phase diagram.
UR - http://www.scopus.com/inward/record.url?scp=0000647793&partnerID=8YFLogxK
U2 - 10.1103/PhysRevB.35.4858
DO - 10.1103/PhysRevB.35.4858
M3 - Article
AN - SCOPUS:0000647793
SN - 0163-1829
VL - 35
SP - 4858
EP - 4864
JO - Physical Review B
JF - Physical Review B
IS - 10
ER -