TY - JOUR
T1 - Early versus delayed repair of infantile strabismus in macaque monkeys
T2 - I. Ocular motor effects
AU - Wong, Agnes M.F.
AU - Foeller, Paul
AU - Bradley, Dolores
AU - Burkhalter, Andreas
AU - Tychsen, Lawrence
PY - 2003/6
Y1 - 2003/6
N2 - Introduction: The appropriate age for surgical correction of esotropic strabismus in human infants is controversial; some clinicians advocate surgery before age 6 months, and others recommend observation and surgery at older ages. Infantile (congenital) esotropia in humans and monkeys is known to be accompanied by a constellation of eye movement abnormalities caused by maldevelopment of cerebral visual motor pathways. The purpose of this study was to determine how early versus delayed correction of strabismus influences development and/or maldevelopment of these eye movement pathways. Methods: Optical strabismus was created in infant macaques by fitting them with prism goggles on day 1 of life. The early correction group (2 experimental and 1 control) wore the goggles for a period of 3 weeks (the equivalent of 3 months before surgical repair in humans). The delayed correction group (3 experimental and 1 control) wore the goggles for a period of 3 or 6 months (the equivalent of 12 or 24 months before surgical repair in humans). Several months after the goggles were removed, the monkeys were trained to perform visual fixation, smooth pursuit, and optokinetic nystagmus (OKN) tasks for a juice reward. Eye movements were recorded using binocular search coils. The performance of the early versus delayed infant monkey groups was also compared with that of a group of adult monkeys who had unrepaired, naturally occurring infantile esotropia. Results: Early correction monkeys developed normal eye movements and exhibited ocular motor behaviors that were indistinguishable from normal control animals. They regained normal binocular eye alignment and showed stable fixation (no latent nystagmus). Monocular horizontal smooth pursuit and large field OKN were symmetric. In contrast, delayed correction monkeys showed persistent esotropia, latent fixation nystagmus, dissociated vertical deviation, and pursuit/OKN asymmetry. Animals who had the longest delay in correction of the optical strabismus exhibited eye movement abnormalities as severe as those of adult animals with uncorrected, natural esotropia. Conclusions: Early correction of strabismus in primates prevents maldevelopment of eye movements driven by cerebral motor pathways. Our results provide additional evidence that early strabismus correction may be beneficial for brain development in human infants.
AB - Introduction: The appropriate age for surgical correction of esotropic strabismus in human infants is controversial; some clinicians advocate surgery before age 6 months, and others recommend observation and surgery at older ages. Infantile (congenital) esotropia in humans and monkeys is known to be accompanied by a constellation of eye movement abnormalities caused by maldevelopment of cerebral visual motor pathways. The purpose of this study was to determine how early versus delayed correction of strabismus influences development and/or maldevelopment of these eye movement pathways. Methods: Optical strabismus was created in infant macaques by fitting them with prism goggles on day 1 of life. The early correction group (2 experimental and 1 control) wore the goggles for a period of 3 weeks (the equivalent of 3 months before surgical repair in humans). The delayed correction group (3 experimental and 1 control) wore the goggles for a period of 3 or 6 months (the equivalent of 12 or 24 months before surgical repair in humans). Several months after the goggles were removed, the monkeys were trained to perform visual fixation, smooth pursuit, and optokinetic nystagmus (OKN) tasks for a juice reward. Eye movements were recorded using binocular search coils. The performance of the early versus delayed infant monkey groups was also compared with that of a group of adult monkeys who had unrepaired, naturally occurring infantile esotropia. Results: Early correction monkeys developed normal eye movements and exhibited ocular motor behaviors that were indistinguishable from normal control animals. They regained normal binocular eye alignment and showed stable fixation (no latent nystagmus). Monocular horizontal smooth pursuit and large field OKN were symmetric. In contrast, delayed correction monkeys showed persistent esotropia, latent fixation nystagmus, dissociated vertical deviation, and pursuit/OKN asymmetry. Animals who had the longest delay in correction of the optical strabismus exhibited eye movement abnormalities as severe as those of adult animals with uncorrected, natural esotropia. Conclusions: Early correction of strabismus in primates prevents maldevelopment of eye movements driven by cerebral motor pathways. Our results provide additional evidence that early strabismus correction may be beneficial for brain development in human infants.
UR - http://www.scopus.com/inward/record.url?scp=0042026488&partnerID=8YFLogxK
U2 - 10.1016/S1091-8531(03)00014-4
DO - 10.1016/S1091-8531(03)00014-4
M3 - Article
C2 - 12825061
AN - SCOPUS:0042026488
SN - 1091-8531
VL - 7
SP - 200
EP - 209
JO - Journal of AAPOS
JF - Journal of AAPOS
IS - 3
ER -