TY - JOUR
T1 - Early-onset metabolic syndrome in mice lacking the intestinal uric acid transporter SLC2A9
AU - Debosch, Brian J.
AU - Kluth, Oliver
AU - Fujiwara, Hideji
AU - Schürmann, Annette
AU - Moley, Kelle
N1 - Funding Information:
We thank Nicole Junicke for technical work in generating the targeting vector used to produce the G9EKO mouse line. This work was supported by the Pediatric Scientist Development Program (PSDP) NIH grant 5K12HD000850-27 (to B.J.D.), DDRCC grant
Funding Information:
P30DK52574 (to B.J.D.) and R01HD040390-07 (K.M.). The German Ministry of Education and Research (BMBF: DZD, 01GI0922), and the State of Brandenburg (to A.S. and O.K.). The Washington University Mouse Diabetes Model Phenotyping Core is supported by DRTC grant P60 DK020579. Mass spectrometry was performed in the Metabolomics Facility at Washington University (P30 DK020579).
PY - 2014/8/7
Y1 - 2014/8/7
N2 - Excess circulating uric acid, a product of hepatic glycolysis and purine metabolism, often accompanies metabolic syndrome. However, whether hyperuricaemia contributes to the development of metabolic syndrome or is merely a by-product of other processes that cause this disorder has not been resolved. In addition, how uric acid is cleared from the circulation is incompletely understood. Here we present a genetic model of spontaneous, early-onset metabolic syndrome in mice lacking the enterocyte urate transporter Glut9 (encoded by the SLC2A9 gene). Glut9-deficient mice develop impaired enterocyte uric acid transport kinetics, hyperuricaemia, hyperuricosuria, spontaneous hypertension, dyslipidaemia and elevated body fat. Allopurinol, a xanthine oxidase inhibitor, can reverse the hypertension and hypercholesterolaemia. These data provide evidence that hyperuricaemia per se could have deleterious metabolic sequelae. Moreover, these findings suggest that enterocytes may regulate whole-body metabolism, and that enterocyte urate metabolism could potentially be targeted to modulate or prevent metabolic syndrome.
AB - Excess circulating uric acid, a product of hepatic glycolysis and purine metabolism, often accompanies metabolic syndrome. However, whether hyperuricaemia contributes to the development of metabolic syndrome or is merely a by-product of other processes that cause this disorder has not been resolved. In addition, how uric acid is cleared from the circulation is incompletely understood. Here we present a genetic model of spontaneous, early-onset metabolic syndrome in mice lacking the enterocyte urate transporter Glut9 (encoded by the SLC2A9 gene). Glut9-deficient mice develop impaired enterocyte uric acid transport kinetics, hyperuricaemia, hyperuricosuria, spontaneous hypertension, dyslipidaemia and elevated body fat. Allopurinol, a xanthine oxidase inhibitor, can reverse the hypertension and hypercholesterolaemia. These data provide evidence that hyperuricaemia per se could have deleterious metabolic sequelae. Moreover, these findings suggest that enterocytes may regulate whole-body metabolism, and that enterocyte urate metabolism could potentially be targeted to modulate or prevent metabolic syndrome.
UR - http://www.scopus.com/inward/record.url?scp=84907301301&partnerID=8YFLogxK
U2 - 10.1038/ncomms5642
DO - 10.1038/ncomms5642
M3 - Article
C2 - 25100214
AN - SCOPUS:84907301301
SN - 2041-1723
VL - 5
JO - Nature Communications
JF - Nature Communications
M1 - 4642
ER -