Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies

Nathan Singh, Jessica Perazzelli, Stephan A. Grupp, David M. Barrett

Research output: Contribution to journalArticle

105 Scopus citations

Abstract

Engineered T cell therapies have begun to demonstrate impressive clinical responses in patients with B cell malignancies. Despite this efficacy, many patients are unable to receive T cell therapy because of failure of in vitro expansion, a necessary component of cell manufacture and a predictor of in vivo activity. To evaluate the biology underlying these functional differences, we investigated T cell expansion potential and memory phenotype during chemotherapy in pediatric patientswith acute lymphoblastic leukemia (ALL) and non-Hodgkin lymphoma (NHL).We found that patients with T cell populations enriched for early lineage cells expanded better in vitro and that patients with ALL had higher numbers of these cells with a corresponding enhancement in expansion as compared to cells from patients with NHL. We further demonstrated that early lineage cells were selectively depleted by cyclophosphamide and cytarabine chemotherapy and that culture with interleukin-7 (IL-7) and IL-15 enriched select early lineage cells and rescued T cell expansion capability. Thus, early lineage cells are essential to T cell fitness for expansion, and enrichment of this population either by timing of T cell collection or culture method can increase the number of patients eligible to receive highly active engineered cellular therapies.

Original languageEnglish
Article number320ra3
JournalScience translational medicine
Volume8
Issue number320
DOIs
StatePublished - Jan 6 2016
Externally publishedYes

Fingerprint Dive into the research topics of 'Early memory phenotypes drive T cell proliferation in patients with pediatric malignancies'. Together they form a unique fingerprint.

Cite this