Early Detection of Endolymphatic Hydrops using the Auditory Nerve Overlapped Waveform (ANOW)

C. Lee, C. V. Valenzuela, S. S. Goodman, D. Kallogjeri, C. A. Buchman, J. T. Lichtenhan

Research output: Contribution to journalArticlepeer-review

12 Scopus citations

Abstract

Endolymphatic hydrops is associated with low-frequency sensorineural hearing loss, with a large body of research dedicated to examining its putative causal role in low-frequency hearing loss. Investigations have been thwarted by the fact that hearing loss is measured in intact ears, but gold standard assessments of endolymphatic hydrops are made postmortem only; and that no objective low-frequency hearing measure has existed. Yet the association of endolymphatic hydrops with low-frequency hearing loss is so strong that it has been established as one of the important defining features for Ménière's disease, rendering it critical to detect endolymphatic hydrops early, regardless of whether it serves a causal role or is the result of other disease mechanisms. We surgically induced endolymphatic hydrops in guinea pigs and employed our recently developed objective neural measure of low-frequency hearing, the Auditory Nerve Overlapped Waveform (ANOW). Hearing loss and endolymphatic hydrops were assessed at various time points after surgery. The ANOW detected low-frequency hearing loss as early as the first day after surgery, well before endolymphatic hydrops was found histologically. The ANOW detected low-frequency hearing loss with perfect sensitivity and specificity in all ears after endolymphatic hydrops developed, where there was a strong linear relationship between degree of endolymphatic hydrops and severity of low-frequency hearing loss. Further, histological data demonstrated that endolymphatic hydrops is seen first in the high-frequency cochlear base, though the ANOW demonstrated that dysfunction begins in the low-frequency apical cochlear half. The results lay the groundwork for future investigations of the causal role of endolymphatic hydrops in low-frequency hearing loss.

Original languageEnglish
Pages (from-to)251-266
Number of pages16
JournalNeuroscience
Volume425
DOIs
StatePublished - Jan 15 2020

Keywords

  • Ménière's disease
  • cochlea
  • cochlear action potential
  • compound action potential
  • low frequency hearing
  • otoacoustic emissions

Fingerprint

Dive into the research topics of 'Early Detection of Endolymphatic Hydrops using the Auditory Nerve Overlapped Waveform (ANOW)'. Together they form a unique fingerprint.

Cite this