Dynamic contrast enhancement and flexible odor codes

Srinath Nizampatnam, Debajit Saha, Rishabh Chandak, Baranidharan Raman

Research output: Contribution to journalArticlepeer-review

10 Scopus citations

Abstract

Sensory stimuli evoke spiking activities patterned across neurons and time that are hypothesized to encode information about their identity. Since the same stimulus can be encountered in a multitude of ways, how stable or flexible are these stimulus-evoked responses? Here we examine this issue in the locust olfactory system. In the antennal lobe, we find that both spatial and temporal features of odor-evoked responses vary in a stimulus-history dependent manner. The response variations are not random, but allow the antennal lobe circuit to enhance the uniqueness of the current stimulus. Nevertheless, information about the odorant identity is confounded due to this contrast enhancement computation. Notably, predictions from a linear logical classifier (OR-of-ANDs) that can decode information distributed in flexible subsets of neurons match results from behavioral experiments. In sum, our results suggest that a trade-off between stability and flexibility in sensory coding can be achieved using a simple computational logic.

Original languageEnglish
Article number3062
JournalNature communications
Volume9
Issue number1
DOIs
StatePublished - Dec 1 2018

Fingerprint

Dive into the research topics of 'Dynamic contrast enhancement and flexible odor codes'. Together they form a unique fingerprint.

Cite this