Abstract

Three-dimensional fluorescence microscopy often suffers from anisotropy, where the resolution along the axial direction is lower than that within the lateral imaging plane. We address this issue by presenting Dual-Cycle, a new framework for joint deconvolution and fusion of dual-view fluorescence images. Inspired by the recent Neuroclear method, Dual-Cycle is designed as a cycle-consistent generative network trained in a self-supervised fashion by combining a dual-view generator and prior-guided degradation model. We validate Dual-Cycle on both synthetic and real data showing its state-of-the-art performance without any external training data.

Original languageEnglish
Title of host publicationICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
ISBN (Electronic)9781728163277
DOIs
StatePublished - 2023
Event48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023 - Rhodes Island, Greece
Duration: Jun 4 2023Jun 10 2023

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2023-June
ISSN (Print)1520-6149

Conference

Conference48th IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2023
Country/TerritoryGreece
CityRhodes Island
Period06/4/2306/10/23

Keywords

  • deep learning
  • Dual-view imaging
  • image deconvolution
  • Light-sheet fluorescence microscopy

Fingerprint

Dive into the research topics of 'Dual-Cycle: Self-Supervised Dual-View Fluorescence Microscopy Image Reconstruction using CycleGAN'. Together they form a unique fingerprint.

Cite this