TY - JOUR
T1 - Drug-induced fatal arrhythmias
T2 - Acquired long QT and Brugada syndromes
AU - Turker, Isik
AU - Ai, Tomohiko
AU - Itoh, Hideki
AU - Horie, Minoru
N1 - Publisher Copyright:
© 2017
PY - 2017/8
Y1 - 2017/8
N2 - Since the early 1990s, the concept of primary “inherited” arrhythmia syndromes or ion channelopathies has evolved rapidly as a result of revolutionary progresses made in molecular genetics. Alterations in genes coding for membrane proteins such as ion channels or their associated proteins responsible for the generation of cardiac action potentials (AP) have been shown to cause specific malfunctions which eventually lead to cardiac arrhythmias. These arrhythmic disorders include congenital long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, short QT syndrome, progressive cardiac conduction disease, etc. Among these, long QT and Brugada syndromes are the most extensively studied, and drugs cause a phenocopy of these two diseases. To date, more than 10 different genes have been reported to be responsible for each syndrome. More recently, it was recognized that long QT syndrome can be latent, even in the presence of an unequivocally pathogenic mutation (silent mutation carrier). Co-existence of other pathological conditions in these silent mutation carriers may trigger a malignant form of ventricular arrhythmia, the so called torsade de pointes (TdP) that is most commonly brought about by drugs. In analogy to the drug-induced long QT syndrome, Brugada type 1 ECG can also be induced or unmasked by a wide variety of drugs and pathological conditions; so physicians may encounter patients with a latent form of Brugada syndrome. Of particular note, Brugada syndrome is frequently associated with atrial fibrillation whose therapeutic agents such as Vaughan Williams class IC drugs can unmask the dormant and asymptomatic Brugada syndrome. This review describes two types of drug-induced arrhythmias: the long QT and Brugada syndromes.
AB - Since the early 1990s, the concept of primary “inherited” arrhythmia syndromes or ion channelopathies has evolved rapidly as a result of revolutionary progresses made in molecular genetics. Alterations in genes coding for membrane proteins such as ion channels or their associated proteins responsible for the generation of cardiac action potentials (AP) have been shown to cause specific malfunctions which eventually lead to cardiac arrhythmias. These arrhythmic disorders include congenital long QT syndrome, Brugada syndrome, catecholaminergic polymorphic ventricular tachycardia, short QT syndrome, progressive cardiac conduction disease, etc. Among these, long QT and Brugada syndromes are the most extensively studied, and drugs cause a phenocopy of these two diseases. To date, more than 10 different genes have been reported to be responsible for each syndrome. More recently, it was recognized that long QT syndrome can be latent, even in the presence of an unequivocally pathogenic mutation (silent mutation carrier). Co-existence of other pathological conditions in these silent mutation carriers may trigger a malignant form of ventricular arrhythmia, the so called torsade de pointes (TdP) that is most commonly brought about by drugs. In analogy to the drug-induced long QT syndrome, Brugada type 1 ECG can also be induced or unmasked by a wide variety of drugs and pathological conditions; so physicians may encounter patients with a latent form of Brugada syndrome. Of particular note, Brugada syndrome is frequently associated with atrial fibrillation whose therapeutic agents such as Vaughan Williams class IC drugs can unmask the dormant and asymptomatic Brugada syndrome. This review describes two types of drug-induced arrhythmias: the long QT and Brugada syndromes.
KW - Brugada syndrome
KW - Drug-induced arrhythmias
KW - Genetic variants
KW - Ion channelopathy
KW - Long QT syndrome
KW - Silent mutation carrier
UR - http://www.scopus.com/inward/record.url?scp=85019888047&partnerID=8YFLogxK
U2 - 10.1016/j.pharmthera.2017.05.001
DO - 10.1016/j.pharmthera.2017.05.001
M3 - Review article
C2 - 28527921
AN - SCOPUS:85019888047
SN - 0163-7258
VL - 176
SP - 48
EP - 59
JO - Pharmacology and Therapeutics
JF - Pharmacology and Therapeutics
ER -