TY - JOUR
T1 - Drosophila vesicular monoamine transporter mutants can adapt to reduced or eliminated vesicular stores of dopamine and serotonin
AU - Simon, Anne F.
AU - Daniels, Richard
AU - Romero-Calderón, Rafael
AU - Grygoruk, Anna
AU - Chang, Hui Yun
AU - Najibi, Rod
AU - Shamouelian, David
AU - Salazar, Evelyn
AU - Solomon, Mordecai
AU - Ackerson, Larry C.
AU - Maidment, Nigel T.
AU - DiAntonio, Aaron
AU - Krantz, David E.
PY - 2009/2
Y1 - 2009/2
N2 - Physiologic and pathogenic changes in amine release induce dramatic behavioral changes, but the underlying cellular mechanisms remain unclear. To investigate these adaptive processes, we have characterized mutations in the Drosophila vesicular monoamine transporter (dVMAT), which is required for the vesicular storage of dopamine, serotonin, and octopamine. dVMAT mutant larvae show reduced locomotion and decreased electrical activity in motoneurons innervating the neuromuscular junction (NMJ) implicating central amines in the regulation of these activities. A parallel increase in evoked glutamate release by the motoneuron is consistent with a homeostatic adaptation at the NMJ. Despite the importance of aminergic signaling for regulating locomotion and other behaviors, adult dVMAT homozygous null mutants survive under conditions of low population density, thus allowing a phenotypic characterization of adult behavior. Homozygous mutant females are sterile and show defects in both egg retention and development; males also show reduced fertility. Homozygotes show an increased attraction to light but are mildly impaired in geotaxis and escape behaviors. In contrast, heterozygous mutants show an exaggerated escape response. Both hetero- and homozygous mutants demonstrate an altered behavioral response to cocaine. dVMAT mutants define potentially adaptive responses to reduced or eliminated aminergic signaling and will be useful to identify the underlying molecular mechanisms.
AB - Physiologic and pathogenic changes in amine release induce dramatic behavioral changes, but the underlying cellular mechanisms remain unclear. To investigate these adaptive processes, we have characterized mutations in the Drosophila vesicular monoamine transporter (dVMAT), which is required for the vesicular storage of dopamine, serotonin, and octopamine. dVMAT mutant larvae show reduced locomotion and decreased electrical activity in motoneurons innervating the neuromuscular junction (NMJ) implicating central amines in the regulation of these activities. A parallel increase in evoked glutamate release by the motoneuron is consistent with a homeostatic adaptation at the NMJ. Despite the importance of aminergic signaling for regulating locomotion and other behaviors, adult dVMAT homozygous null mutants survive under conditions of low population density, thus allowing a phenotypic characterization of adult behavior. Homozygous mutant females are sterile and show defects in both egg retention and development; males also show reduced fertility. Homozygotes show an increased attraction to light but are mildly impaired in geotaxis and escape behaviors. In contrast, heterozygous mutants show an exaggerated escape response. Both hetero- and homozygous mutants demonstrate an altered behavioral response to cocaine. dVMAT mutants define potentially adaptive responses to reduced or eliminated aminergic signaling and will be useful to identify the underlying molecular mechanisms.
UR - http://www.scopus.com/inward/record.url?scp=62449154730&partnerID=8YFLogxK
U2 - 10.1534/genetics.108.094110
DO - 10.1534/genetics.108.094110
M3 - Article
C2 - 19033154
AN - SCOPUS:62449154730
SN - 0016-6731
VL - 181
SP - 525
EP - 541
JO - Genetics
JF - Genetics
IS - 2
ER -