TY - JOUR
T1 - Down-regulation of protein-tyrosine phosphatases activates an immune receptor in the absence of its translocation into lipid rafts
AU - Heneberg, Petr
AU - Dráberová, Lubica
AU - Bambousková, Monika
AU - Pompach, Petr
AU - Dráber, Petr
PY - 2010/4/23
Y1 - 2010/4/23
N2 - The earliest known biochemical step that occurs after ligand binding to the multichain immune recognition receptor is tyrosine phosphorylation of the receptor subunits. In mast cells and basophils activated by multivalent antigen-IgE complexes, this step is mediated by Src family kinase Lyn, which phosphorylates the high affinity IgE receptor (FcεRI). However, the exact molecular mechanism of this phosphorylation step is incompletely understood. In this study, we tested the hypothesis that changes in activity and/or topography of protein-tyrosine phosphatases (PTPs) could play a major role in the FcεRI triggering.Wefound that exposure of rat basophilic leukemia cells or mouse bone marrow-derived mast cells to PTP inhibitors, H2O 2 or pervanadate, induced phosphorylation of the FcεRI subunits, similarly as FcεRI triggering. Interestingly, and in sharp contrast to antigen-induced activation, neither H2O2 nor pervanadate induced any changes in the association of FcεRI with detergent-resistant membranes and in the topography of FcεRI detectable by electron microscopy on isolated plasma membrane sheets. In cells stimulated with pervanadate,H 2O2 or antigen, enhanced oxidation of active site cysteine of several PTPs was detected. Unexpectedly, most of oxidized phosphatases bound to the plasma membrane were associated with the actin cytoskeleton. Several PTPs (SHP-1, SHP-2, hematopoietic PTP, and PTP-MEG2) showed changes in their enzymatic activity and/or oxidation state during activation. Based on these and other data, we propose that down-regulation of enzymatic activity of PTPs and/or changes in their accessibility to the substrates play a key role in initial tyrosine phosphorylation of the FcεRI and other multichain immune receptors.
AB - The earliest known biochemical step that occurs after ligand binding to the multichain immune recognition receptor is tyrosine phosphorylation of the receptor subunits. In mast cells and basophils activated by multivalent antigen-IgE complexes, this step is mediated by Src family kinase Lyn, which phosphorylates the high affinity IgE receptor (FcεRI). However, the exact molecular mechanism of this phosphorylation step is incompletely understood. In this study, we tested the hypothesis that changes in activity and/or topography of protein-tyrosine phosphatases (PTPs) could play a major role in the FcεRI triggering.Wefound that exposure of rat basophilic leukemia cells or mouse bone marrow-derived mast cells to PTP inhibitors, H2O 2 or pervanadate, induced phosphorylation of the FcεRI subunits, similarly as FcεRI triggering. Interestingly, and in sharp contrast to antigen-induced activation, neither H2O2 nor pervanadate induced any changes in the association of FcεRI with detergent-resistant membranes and in the topography of FcεRI detectable by electron microscopy on isolated plasma membrane sheets. In cells stimulated with pervanadate,H 2O2 or antigen, enhanced oxidation of active site cysteine of several PTPs was detected. Unexpectedly, most of oxidized phosphatases bound to the plasma membrane were associated with the actin cytoskeleton. Several PTPs (SHP-1, SHP-2, hematopoietic PTP, and PTP-MEG2) showed changes in their enzymatic activity and/or oxidation state during activation. Based on these and other data, we propose that down-regulation of enzymatic activity of PTPs and/or changes in their accessibility to the substrates play a key role in initial tyrosine phosphorylation of the FcεRI and other multichain immune receptors.
UR - http://www.scopus.com/inward/record.url?scp=77951224086&partnerID=8YFLogxK
U2 - 10.1074/jbc.M109.052555
DO - 10.1074/jbc.M109.052555
M3 - Article
C2 - 20157115
AN - SCOPUS:77951224086
SN - 0021-9258
VL - 285
SP - 12787
EP - 12802
JO - Journal of Biological Chemistry
JF - Journal of Biological Chemistry
IS - 17
ER -