TY - JOUR
T1 - Dosimetric variances anticipated from breathing-induced tumor motion during tomotherapy treatment delivery
AU - Chaudhari, S. R.
AU - Goddu, S. M.
AU - Rangaraj, D.
AU - Pechenaya, O. L.
AU - Lu, W.
AU - Kintzel, E.
AU - Malinowski, K.
AU - Parikh, P. J.
AU - Bradley, J. D.
AU - Low, D. A.
PY - 2009
Y1 - 2009
N2 - In their classic paper, Yu et al (1998 Phys. Med. Biol. 43 91) investigated the interplay between tumor motion caused by breathing and dynamically collimated, intensity-modulated radiation delivery. The paper's analytic model assumed an idealized, sinusoidal pattern of motion. In this work, we investigate the effect of tumor motion based on patients' breathing patterns for typical tomotherapy treatments with field widths of 1.0 and 2.5 cm. The measured breathing patterns of 52 lung- and upper-abdominal-cancer patients were used to model a one-dimensional motion. A convolution of the measured beam-dose profiles with the motion model was used to compute the dose-distribution errors, and the positive and negative dose errors were recorded for each simulation. The dose errors increased with increasing motion magnitude, until the motion was similar in magnitude to the field width. For the 1.0 cm and 2.5 cm field widths, the maximum dose-error magnitude exceeded 10% in some simulations, even with breathing-motion magnitudes as small as 5 mm and 10 mm, respectively. Dose errors also increased slightly with increasing couch speed. We propose that the errors were due to subtle drifts in the amplitude and frequency of breathing motion, as well as changes in baseline (exhalation) position, causing both over- and under-dosing of the target. The results of this study highlight potential breathing-motion-induced dose delivery errors in tomotherapy. However, for conventionally fractionated treatments, the dose delivery errors may not be co-located and may average out over many fractions, although this may not be true for hypofractionated treatments.
AB - In their classic paper, Yu et al (1998 Phys. Med. Biol. 43 91) investigated the interplay between tumor motion caused by breathing and dynamically collimated, intensity-modulated radiation delivery. The paper's analytic model assumed an idealized, sinusoidal pattern of motion. In this work, we investigate the effect of tumor motion based on patients' breathing patterns for typical tomotherapy treatments with field widths of 1.0 and 2.5 cm. The measured breathing patterns of 52 lung- and upper-abdominal-cancer patients were used to model a one-dimensional motion. A convolution of the measured beam-dose profiles with the motion model was used to compute the dose-distribution errors, and the positive and negative dose errors were recorded for each simulation. The dose errors increased with increasing motion magnitude, until the motion was similar in magnitude to the field width. For the 1.0 cm and 2.5 cm field widths, the maximum dose-error magnitude exceeded 10% in some simulations, even with breathing-motion magnitudes as small as 5 mm and 10 mm, respectively. Dose errors also increased slightly with increasing couch speed. We propose that the errors were due to subtle drifts in the amplitude and frequency of breathing motion, as well as changes in baseline (exhalation) position, causing both over- and under-dosing of the target. The results of this study highlight potential breathing-motion-induced dose delivery errors in tomotherapy. However, for conventionally fractionated treatments, the dose delivery errors may not be co-located and may average out over many fractions, although this may not be true for hypofractionated treatments.
UR - http://www.scopus.com/inward/record.url?scp=67649130459&partnerID=8YFLogxK
U2 - 10.1088/0031-9155/54/8/019
DO - 10.1088/0031-9155/54/8/019
M3 - Article
C2 - 19349658
AN - SCOPUS:67649130459
SN - 0031-9155
VL - 54
SP - 2541
EP - 2555
JO - Physics in medicine and biology
JF - Physics in medicine and biology
IS - 8
ER -