Domains rearranged methyltransferase3 controls DNA methylation and regulates RNA polymerase V transcript abundance in arabidopsis

Xuehua Zhong, Christopher J. Hale, Nguyen Minh, Ausin Israel, Groth Martin, Hetzel Jonathan, Ajay A. Vashisht, Ian R. Henderson, James A. Wohlschlegel, Steven E. Jacobsen

Research output: Contribution to journalArticlepeer-review

35 Scopus citations

Abstract

DNA methylation is a mechanism of epigenetic gene regulation and genome defense conserved in many eukaryotic organisms. In Arabidopsis, the DNA methyltransferase DOMAINS REARRANGED METHYLASE 2 (DRM2) controls RNA-directed DNA methylation in a pathway that also involves the plant-specific RNA Polymerase V (Pol V). Additionally, the Arabidopsis genome encodes an evolutionarily conserved but catalytically inactive DNA methyltransferase, DRM3. Here, we show that DRM3 has moderate effects on global DNA methylation and small RNA abundance and that DRM3 physically interacts with Pol V. In Arabidopsis drm3 mutants, we observe a lower level of Pol V-dependent noncoding RNA transcripts even though Pol V chromatin occupancy is increased at many sites in the genome. These findings suggest that DRM3 acts to promote Pol V transcriptional elongation or assist in the stabilization of Pol V transcripts. This work sheds further light on the mechanism by which long noncoding RNAs facilitate RNA-directed DNA methylation.

Original languageEnglish
Pages (from-to)911-916
Number of pages6
JournalProceedings of the National Academy of Sciences of the United States of America
Volume112
Issue number3
DOIs
StatePublished - Jan 20 2015

Keywords

  • DNA methylation
  • Epigenetic regulation
  • Gene silencing
  • Non-coding RNA
  • RNA polymerase

Fingerprint

Dive into the research topics of 'Domains rearranged methyltransferase3 controls DNA methylation and regulates RNA polymerase V transcript abundance in arabidopsis'. Together they form a unique fingerprint.

Cite this