Does drainage hole size influence adhesion on ventricular catheters?

Carolyn A. Harris, James P. McAllister

Research output: Contribution to journalArticlepeer-review

45 Scopus citations

Abstract

Purpose: Ventricular catheter drainage holes of shunt systems used to treat hydrocephalus obstruct with tissue commonly comprising monocytes/macrophages, astrocytes, and giant cells. Despite high rates of obstruction, very few studies have manipulated drainage hole orientation, number, position, or diameter. By altering the hole diameter but maintaining a constant hole surface area, we manipulated shear stress through the holes, which we hypothesized would change the degree of macrophage and astrocyte attachment. Methods: First, a hole fabrication method was chosen from two fabrication techniques including punched holes in catheter tubing and constructed holes using nanofabrication techniques. Results: Punched holes were chosen to vary hole size from 282 to 975 μm because (1) samples were geometrically similar to commercially available ventricular catheters without significant microscopic differences in roughness values and (2) total macrophage and astrocyte adhesion on the punched holes was not significantly different from adhesion on the commercially available catheters. Overall adhesion from least to most adherent appeared to follow 975∈<∈754∈≈∈500∈<∈282-μm hole diameter for macrophages and 975∈<∈500∈<∈754∈<∈ 282 for astrocytes with an obvious dependency on catheter orientation with respect to the horizontal; a dependency to the proximity of the hole to the catheter tip was not observed. Conclusion: This study suggests that macrophage and astrocyte adhesion generally decreases with increasing hole diameter under flow conditions and underscores the necessity for future work to examine how hole diameter impacts inflammatory-based shunt obstruction.

Original languageEnglish
Pages (from-to)1221-1232
Number of pages12
JournalChild's Nervous System
Volume27
Issue number8
DOIs
StatePublished - Aug 2011

Keywords

  • Hole size
  • Hydrocephalus
  • Shear stress
  • Shunting

Fingerprint

Dive into the research topics of 'Does drainage hole size influence adhesion on ventricular catheters?'. Together they form a unique fingerprint.

Cite this