TY - JOUR
T1 - DNAM-1 controls NK cell activation via an ITT-like motif
AU - Zhang, Zhanguang
AU - Wu, Ning
AU - Lu, Yan
AU - Davidson, Dominique
AU - Colonna, Marco
AU - Veillette, André
N1 - Publisher Copyright:
© 2015 Zhang et al.
PY - 2015/11/16
Y1 - 2015/11/16
N2 - DNAM-1 (CD226) is an activating receptor expressed on natural killer (NK) cells, CD8+ T cells, and other immune cells. Upon recognition of its ligands, CD155 and CD112, DNAM-1 promotes NK cell-mediated elimination of transformed and virus-infected cells. It also has a key role in expansion and maintenance of virus-specific memory NK cells. Herein, the mechanism by which DNAM-1 controls NK cell-mediated cytotoxicity and cytokine production was elucidated. Cytotoxicity and cytokine production triggered by DNAM-1 were mediated via a conserved tyrosine- and asparagine-based motif in the cytoplasmic domain of DNAM-1. Upon phosphorylation by Src kinases, this motif enabled binding of DNAM-1 to adaptor Grb2, leading to activation of enzymes Vav-1, phosphatidylinositol 3' kinase, and phospholipase C-γ1. It also promoted activation of kinases Erk and Akt, and calcium fluxes. Although, as reported, DNAM-1 promoted adhesion, this function was signal-independent and insufficient to promote cytotoxicity. DNAM-1 signaling was also required to enhance cytotoxicity, by increasing actin polymerization and granule polarization. We propose that DNAM-1 promotes NK cell activation via an immunoreceptor tyrosine tail (ITT)-like motif coupling DNAM-1 to Grb2 and other downstream effectors.
AB - DNAM-1 (CD226) is an activating receptor expressed on natural killer (NK) cells, CD8+ T cells, and other immune cells. Upon recognition of its ligands, CD155 and CD112, DNAM-1 promotes NK cell-mediated elimination of transformed and virus-infected cells. It also has a key role in expansion and maintenance of virus-specific memory NK cells. Herein, the mechanism by which DNAM-1 controls NK cell-mediated cytotoxicity and cytokine production was elucidated. Cytotoxicity and cytokine production triggered by DNAM-1 were mediated via a conserved tyrosine- and asparagine-based motif in the cytoplasmic domain of DNAM-1. Upon phosphorylation by Src kinases, this motif enabled binding of DNAM-1 to adaptor Grb2, leading to activation of enzymes Vav-1, phosphatidylinositol 3' kinase, and phospholipase C-γ1. It also promoted activation of kinases Erk and Akt, and calcium fluxes. Although, as reported, DNAM-1 promoted adhesion, this function was signal-independent and insufficient to promote cytotoxicity. DNAM-1 signaling was also required to enhance cytotoxicity, by increasing actin polymerization and granule polarization. We propose that DNAM-1 promotes NK cell activation via an immunoreceptor tyrosine tail (ITT)-like motif coupling DNAM-1 to Grb2 and other downstream effectors.
UR - http://www.scopus.com/inward/record.url?scp=84973862417&partnerID=8YFLogxK
U2 - 10.1084/jem.20150792
DO - 10.1084/jem.20150792
M3 - Article
C2 - 26552706
AN - SCOPUS:84973862417
SN - 0022-1007
VL - 212
SP - 2165
EP - 2182
JO - Journal of Experimental Medicine
JF - Journal of Experimental Medicine
IS - 12
ER -