TY - JOUR
T1 - Disruption of the maxi-K-caveolin-1 interaction alters current expression in human myometrial cells
AU - Brainard, Adam M.
AU - Korovkina, Victoria P.
AU - England, Sarah K.
N1 - Funding Information:
This work was supported by National Institute of Child Health and Human Development Grant HD-037831 (to S. K. England) and National Center for Research Resources, Clinical and Translational Science Award M01-RR-00059 (for human tissue attainment). The authors thank Susan Stamnes for technical assistance, Dr. Lori Day for attaining myometrial tissue, and Drs. Kathryn Lamping and Christine Blaumueller for critical review of the manuscript. The authors acknowledge Dr. Debbie Thurmond for the development of viral constructs.
PY - 2009/11/23
Y1 - 2009/11/23
N2 - Background: One determinant of the total K+ myometrial smooth muscle cell (MSMC) current is the large conductance, calcium- and voltage-activated potassium channel (maxi-K channel). This channel provides a repolarizing current in response to excitatory stimuli, most notably in response to increases in the levels of intracellular Ca2+, and blocking the channel by pharmacological means induces the depolarization of MSMCs and also enhances contraction strength. In MSMCs, maxi-K channels can reside in the caveolae, where they associate with the scaffolding protein caveolin-1 (cav-1). The aim of this study was to investigate the consequences of this interaction - more specifically, how disruption of the association between the maxi-K channel and cav-1 may influence the current expression and excitability of myometrial cells - with the aim of better understanding the mechanisms that underlie the regulation of normal and aberrant uterine function. Methods: Myometrial biopsies were collected from women undergoing elective C-sections. From these samples, myometrial cells were isolated, cultured, infected with a virus containing either caveolin-1 (cav-1) siRNA or scrambled cav-1 siRNA, and finally subjected to patch-clamp analysis. Mutant caveolin-binding site maxi-K channel constructs were generated and transfected into mouse Ltk- fibroblasts. Channel activity, expression, association, and localization were examined by patch-clamping, Western blot, immunoprecipitation, and immunofluorescence, respectively. Results: The caveolin-1 siRNA suppressed the total K+ current in human myometrial smooth muscle cells (hMSMC), as evident from comparison to the currents generated by both non-infected cells and cells infected with scrambled siRNA controls. The interaction between the maxi-K channel and caveolin depends on a region in the channel's C-terminal caveolin-binding site. Mutations of aromatic residues in this site (mutant F1012A, mutant Y1007A, F1012A and mutant Y1007A, F1012A, Y1015A) resulted in a decrease in K+ current compared to that produced by wild-type channels transfected into mouse Ltk- fibroblasts. However, mutation of all three aromatic amino acids (mutant Y1007A, F1012A, Y1015A) was necessary to disrupt the association between caveolin and the maxi-K channel, as visualized by immunofluorescence and immunoprecipitation. Conclusion: Our results suggest that disruption of the caveolin-binding site interferes with the cav-1/maxi-K channel interaction, and that lack of the cav-1/maxi-K channel interaction in MSMCs attenuates the total K+ channel current of the cell.
AB - Background: One determinant of the total K+ myometrial smooth muscle cell (MSMC) current is the large conductance, calcium- and voltage-activated potassium channel (maxi-K channel). This channel provides a repolarizing current in response to excitatory stimuli, most notably in response to increases in the levels of intracellular Ca2+, and blocking the channel by pharmacological means induces the depolarization of MSMCs and also enhances contraction strength. In MSMCs, maxi-K channels can reside in the caveolae, where they associate with the scaffolding protein caveolin-1 (cav-1). The aim of this study was to investigate the consequences of this interaction - more specifically, how disruption of the association between the maxi-K channel and cav-1 may influence the current expression and excitability of myometrial cells - with the aim of better understanding the mechanisms that underlie the regulation of normal and aberrant uterine function. Methods: Myometrial biopsies were collected from women undergoing elective C-sections. From these samples, myometrial cells were isolated, cultured, infected with a virus containing either caveolin-1 (cav-1) siRNA or scrambled cav-1 siRNA, and finally subjected to patch-clamp analysis. Mutant caveolin-binding site maxi-K channel constructs were generated and transfected into mouse Ltk- fibroblasts. Channel activity, expression, association, and localization were examined by patch-clamping, Western blot, immunoprecipitation, and immunofluorescence, respectively. Results: The caveolin-1 siRNA suppressed the total K+ current in human myometrial smooth muscle cells (hMSMC), as evident from comparison to the currents generated by both non-infected cells and cells infected with scrambled siRNA controls. The interaction between the maxi-K channel and caveolin depends on a region in the channel's C-terminal caveolin-binding site. Mutations of aromatic residues in this site (mutant F1012A, mutant Y1007A, F1012A and mutant Y1007A, F1012A, Y1015A) resulted in a decrease in K+ current compared to that produced by wild-type channels transfected into mouse Ltk- fibroblasts. However, mutation of all three aromatic amino acids (mutant Y1007A, F1012A, Y1015A) was necessary to disrupt the association between caveolin and the maxi-K channel, as visualized by immunofluorescence and immunoprecipitation. Conclusion: Our results suggest that disruption of the caveolin-binding site interferes with the cav-1/maxi-K channel interaction, and that lack of the cav-1/maxi-K channel interaction in MSMCs attenuates the total K+ channel current of the cell.
UR - http://www.scopus.com/inward/record.url?scp=71549157744&partnerID=8YFLogxK
U2 - 10.1186/1477-7827-7-131
DO - 10.1186/1477-7827-7-131
M3 - Article
C2 - 19930645
AN - SCOPUS:71549157744
SN - 1477-7827
VL - 7
JO - Reproductive Biology and Endocrinology
JF - Reproductive Biology and Endocrinology
M1 - 131
ER -