TY - JOUR
T1 - Direct observation of a preinactivated, open state in BK channels with β2 subunits
AU - Benzinger, G. Richard
AU - Xia, Xiao Ming
AU - Lingle, Christopher J.
PY - 2006/2
Y1 - 2006/2
N2 - Proteins arising from the Slo family assemble into homotetramers to form functional large-conductance, Ca2+- and voltage-activated K + channels, or BK channels. These channels are also found in association with accessory β subunits, which modulate several aspects of channel gating and expression. Coexpression with either of two such subunits, β2 or β3b, confers time-dependent inactivation onto BK currents. mSlo1+β3b channels display inactivation that is very rapid but incomplete. Previous studies involving macroscopic recordings from these channels have argued for the existence of a second, short-lived conducting state in rapid equilibrium with the nonconducting, inactivated conformation. This state has been termed "pre-inactivated," or O*. β2-mediated inactivation, in contrast, occurs more slowly but is virtually complete at steady state. Here we demonstrate, using both macroscopic and single channel current recordings, that a preinactivated state is also a property of mSlo1+β2 channels. Detection of this state is enhanced by a mutation (W4E) within the initial β2 NH2-terminal segment critical for inactivation. This mutation increases the rate of recovery to the preinactivated open state, yielding macroscopic inactivation properties qualitatively more similar to those of β3b. Furthermore, short-lived openings corresponding to entry into the preinactivated state can be observed directly with single-channel recording. By examining the initial openings after depolarization of a channel containing β2-W4E, we show that channels can arrive directly at the preinactivated state without passing through the usual long-lived open conformation. This final result suggests that channel opening and inactivation are at least partly separable in this channel. Mechanistically, the preinactivated and inactivated conformations may correspond to binding of the β subunit NH2 terminus in the vicinity of the cytoplasmic pore mouth, followed by definitive movement of the NH2 terminus into a position of occlusion within the ion-conducting pathway.
AB - Proteins arising from the Slo family assemble into homotetramers to form functional large-conductance, Ca2+- and voltage-activated K + channels, or BK channels. These channels are also found in association with accessory β subunits, which modulate several aspects of channel gating and expression. Coexpression with either of two such subunits, β2 or β3b, confers time-dependent inactivation onto BK currents. mSlo1+β3b channels display inactivation that is very rapid but incomplete. Previous studies involving macroscopic recordings from these channels have argued for the existence of a second, short-lived conducting state in rapid equilibrium with the nonconducting, inactivated conformation. This state has been termed "pre-inactivated," or O*. β2-mediated inactivation, in contrast, occurs more slowly but is virtually complete at steady state. Here we demonstrate, using both macroscopic and single channel current recordings, that a preinactivated state is also a property of mSlo1+β2 channels. Detection of this state is enhanced by a mutation (W4E) within the initial β2 NH2-terminal segment critical for inactivation. This mutation increases the rate of recovery to the preinactivated open state, yielding macroscopic inactivation properties qualitatively more similar to those of β3b. Furthermore, short-lived openings corresponding to entry into the preinactivated state can be observed directly with single-channel recording. By examining the initial openings after depolarization of a channel containing β2-W4E, we show that channels can arrive directly at the preinactivated state without passing through the usual long-lived open conformation. This final result suggests that channel opening and inactivation are at least partly separable in this channel. Mechanistically, the preinactivated and inactivated conformations may correspond to binding of the β subunit NH2 terminus in the vicinity of the cytoplasmic pore mouth, followed by definitive movement of the NH2 terminus into a position of occlusion within the ion-conducting pathway.
UR - http://www.scopus.com/inward/record.url?scp=31744435788&partnerID=8YFLogxK
U2 - 10.1085/jgp.200509425
DO - 10.1085/jgp.200509425
M3 - Article
C2 - 16418401
AN - SCOPUS:31744435788
SN - 0022-1295
VL - 127
SP - 119
EP - 131
JO - Journal of General Physiology
JF - Journal of General Physiology
IS - 2
ER -