Differential expression of tissue repair genes in the pathogenesis of chronic obstructive pulmonary disease

John V. Gosselink, Shizu Hayashi, W. Mark Elliott, Li Xing, Becky Chan, Luojia Yang, Claire Wright, Don Sin, Peter D. Paré, John A. Pierce, Richard A. Pierce, Alex Patterson, Joel Cooper, James C. Hogg

Research output: Contribution to journalArticlepeer-review

125 Scopus citations


Rationale: The airflow limitation that defines severity of chronic obstructive pulmonary disease(COPD) is causedby a combination of small airway obstruction and emphysematous lung destruction. Objectives: To examine the hypothesis that small airway obstructive andemphysematous destructive lesions are produced by differential expression of genes associated with tissue repair. Methods: The expression of 54 genes associated with repair of repetitively damaged tissue was measured in 136 paired samples of small bronchioles and surrounding lung tissue separated by laser capture microdissection. These samples were collected from 63 patients at different levels of disease severity who required surgery for either lung cancer or lung transplantation for very severe COPD. Gene expression was measured by quantitative polymerase chain reaction in these paired samples and compared with the FEV1 by linear regression analysis. Measurements and Main Results: After corrections for false discovery rates, only 2 of 10 genes (serpin peptidase inhibitor/plasminogen activator inhibitor member 2 and matrix metalloproteinase [MMP] 10) increased, whereas 8 (MMP2, integrin-α1, vascular endothelial growth factor, a disintegrin and metallopeptidase domain 33, scatter factor/hepatocyte growth factor, tissue inhibitor of matrix metalloproteinase-2, fibronectin, and collagen 3α1) decreased in small airways in association with FEV 1. In contrast, 8/12 genes (early growth response factor 1, MMP1, MMP9, MMP10, plasminogen activator urokinase, plasminogen activator urokinase receptor, tumor necrosis factor, and IL13) increased and 4/12 (MMP2, tissue inhibitor of matrix metalloproteinase-1, collagen 1α1, and transforming growth factor-β3) decreased in the surrounding lung tissue in association with progression of COPD. Conclusions: The progression of COPD is associated with the differential expression of a cluster of genes that favor the degradation of the tissue surrounding the small conducting airways.

Original languageEnglish
Pages (from-to)1329-1335
Number of pages7
JournalAmerican journal of respiratory and critical care medicine
Issue number12
StatePublished - Jun 15 2010


  • Emphysema
  • Laser microdissection
  • Nucleic acid amplification techniques
  • Polymerase chain reaction
  • Pulmonary disease, chronic obstructive


Dive into the research topics of 'Differential expression of tissue repair genes in the pathogenesis of chronic obstructive pulmonary disease'. Together they form a unique fingerprint.

Cite this