TY - JOUR
T1 - Differential expression of suppressors of cytokine signaling-1 and -3 and related cytokines in central nervous system during remitting versus non-remitting forms of experimental autoimmune encephalomyelitis
AU - Stark, Jennifer L.
AU - Cross, Anne H.
N1 - Funding Information:
We are grateful for the excellent technical assistance of Nathan Allen, Bob Mikesell and Michael Ramsbottom. Neville S. Rapp offered helpful suggestions on the manuscript. These studies were funded by the National MS Society (PP0824) and the Barnes-Jewish Hospital Foundation. The ABI Prism 7000 was donated for MS research by Linda and Ken Slavin.
PY - 2006/2
Y1 - 2006/2
N2 - SJL mice exhibit a relapsing-remitting course of experimental autoimmune encephalomyelitis (EAE), whereas C57BL/6 (B6) mice display a more chronic course without complete remissions. Suppressor of cytokine signaling (SOCS)-1 and SOCS-3 are members of a family of inducible intracellular proteins that negatively regulate cytokine signaling in cells of hematopoietic origin and may influence the Th1 to Th2 balance. SOCS-1 and SOCS-3 are induced by cytokines that are known to be up-regulated during EAE, including IFN-gamma (IFN-g) and IL-6, respectively. To test the hypothesis that the level of induction of SOCS-1 and SOCS-3 correlates with the course of EAE, mRNA levels were compared in spinal cords of SJL and B6 mice during discrete stages of disease. SOCS-1 and SOCS-3 were elevated throughout active disease in both strains. At peak EAE, SOCS-1 was higher and SOCS-3 was lower in B6 cords compared with SJL cords. This correlated with greater expression of the Th1 cytokine, IFN-g, and less of the Th2 cytokine, IL-10, in B6 cords relative to SJL cords during onset and peak disease. SOCS-3 inducers in the IL-6 family were expressed differentially between the strains. IL-6 and leukemia inhibitory factor were higher at onset in B6 cords whereas ciliary neurotrophic factor was increased in SJL cords during peak disease. Expression of fibroblast growth factor-2, which may be involved in remyelination, was higher in SJL cords at peak. Comparison of these models suggests that cytokine autoregulatory mechanisms involving SOCS may play a role in determining the course of EAE.
AB - SJL mice exhibit a relapsing-remitting course of experimental autoimmune encephalomyelitis (EAE), whereas C57BL/6 (B6) mice display a more chronic course without complete remissions. Suppressor of cytokine signaling (SOCS)-1 and SOCS-3 are members of a family of inducible intracellular proteins that negatively regulate cytokine signaling in cells of hematopoietic origin and may influence the Th1 to Th2 balance. SOCS-1 and SOCS-3 are induced by cytokines that are known to be up-regulated during EAE, including IFN-gamma (IFN-g) and IL-6, respectively. To test the hypothesis that the level of induction of SOCS-1 and SOCS-3 correlates with the course of EAE, mRNA levels were compared in spinal cords of SJL and B6 mice during discrete stages of disease. SOCS-1 and SOCS-3 were elevated throughout active disease in both strains. At peak EAE, SOCS-1 was higher and SOCS-3 was lower in B6 cords compared with SJL cords. This correlated with greater expression of the Th1 cytokine, IFN-g, and less of the Th2 cytokine, IL-10, in B6 cords relative to SJL cords during onset and peak disease. SOCS-3 inducers in the IL-6 family were expressed differentially between the strains. IL-6 and leukemia inhibitory factor were higher at onset in B6 cords whereas ciliary neurotrophic factor was increased in SJL cords during peak disease. Expression of fibroblast growth factor-2, which may be involved in remyelination, was higher in SJL cords at peak. Comparison of these models suggests that cytokine autoregulatory mechanisms involving SOCS may play a role in determining the course of EAE.
KW - Cytokines
KW - EAE
KW - Multiple sclerosis
KW - SOCS-1
KW - SOCS-3
UR - http://www.scopus.com/inward/record.url?scp=31544435227&partnerID=8YFLogxK
U2 - 10.1093/intimm/dxh373
DO - 10.1093/intimm/dxh373
M3 - Article
C2 - 16373362
AN - SCOPUS:31544435227
SN - 0953-8178
VL - 18
SP - 347
EP - 353
JO - International Immunology
JF - International Immunology
IS - 2
ER -