TY - JOUR
T1 - Differential expression of 92-kDa gelatinase in primary atherosclerotic versus restenotic coronary lesions
AU - Brown, David L.
AU - Hibbs, Margaret S.
AU - Kearney, Marianne
AU - Isner, Jeffrey M.
PY - 1997/4/1
Y1 - 1997/4/1
N2 - Rupture of atherosclerotic plaque resulting in intravascular thrombosis and myocardial infarction (MI), while a common sequelae of de novo atherosclerotic lesions, is an uncommon consequence of restenosis. We hypothesize that the rarity of MI associated with restenotic lesions is a result of cellular and biochemical modifications induced by the local response to mechanical injury rendering the site resistant to rupture. Clinical and angiographic features of patients presenting with symptomatic primary (n = 24) or restenotic coronary lesions (n = 12) who underwent directional atherectomy were compared. Histologic analysis and immunostaining for 92-kDa gelatinase were performed on each atherectomy specimen. There was no significant difference between the 2 groups regarding age, gender, incidence of diabetes, smoking, hypertension, hypercholesterolemia, or previous MI. Lesion length, extent, and distribution of disease and percent stenosis were not significantly different between groups. However, 8% of primary lesions were hypercellular compared with 75% of restenotic specimens (p = 0.0001). Hypercellularity in restenotic specimens was shown by adjacent section staining to be composed of smooth muscle cells. Ninety-two kDa gelatinase was expressed in 79% of primary lesions versus 0% of restenotic specimens (p = 0.0001). Thrombus was identified in 54% of primary lesions versus 22% of restenotic lesions (p <0.05). These findings suggest that, independent of clinical or angiographic influences, balloon injury induces increased lesion cellularity and reduced expression of 92-kDa gelatinase, possibly resulting in a reduced propensity for plaque rupture and thrombosis.
AB - Rupture of atherosclerotic plaque resulting in intravascular thrombosis and myocardial infarction (MI), while a common sequelae of de novo atherosclerotic lesions, is an uncommon consequence of restenosis. We hypothesize that the rarity of MI associated with restenotic lesions is a result of cellular and biochemical modifications induced by the local response to mechanical injury rendering the site resistant to rupture. Clinical and angiographic features of patients presenting with symptomatic primary (n = 24) or restenotic coronary lesions (n = 12) who underwent directional atherectomy were compared. Histologic analysis and immunostaining for 92-kDa gelatinase were performed on each atherectomy specimen. There was no significant difference between the 2 groups regarding age, gender, incidence of diabetes, smoking, hypertension, hypercholesterolemia, or previous MI. Lesion length, extent, and distribution of disease and percent stenosis were not significantly different between groups. However, 8% of primary lesions were hypercellular compared with 75% of restenotic specimens (p = 0.0001). Hypercellularity in restenotic specimens was shown by adjacent section staining to be composed of smooth muscle cells. Ninety-two kDa gelatinase was expressed in 79% of primary lesions versus 0% of restenotic specimens (p = 0.0001). Thrombus was identified in 54% of primary lesions versus 22% of restenotic lesions (p <0.05). These findings suggest that, independent of clinical or angiographic influences, balloon injury induces increased lesion cellularity and reduced expression of 92-kDa gelatinase, possibly resulting in a reduced propensity for plaque rupture and thrombosis.
UR - http://www.scopus.com/inward/record.url?scp=0031003372&partnerID=8YFLogxK
U2 - 10.1016/S0002-9149(97)00007-6
DO - 10.1016/S0002-9149(97)00007-6
M3 - Article
C2 - 9104898
AN - SCOPUS:0031003372
SN - 0002-9149
VL - 79
SP - 878
EP - 882
JO - American Journal of Cardiology
JF - American Journal of Cardiology
IS - 7
ER -