TY - JOUR
T1 - Differential Expression and Remodeling of Transient Outward Potassium Currents in Human Left Ventricles
AU - Johnson, Eric K.
AU - Springer, Steven J.
AU - Wang, Wei
AU - Dranoff, Edward J.
AU - Zhang, Yan
AU - Kanter, Evelyn M.
AU - Yamada, Kathryn A.
AU - Nerbonne, Jeanne M.
N1 - Funding Information:
This study was made possible by the resources provided by the Translational Cardiovascular Biobank and Repository at Washington University Medical School, supported by the Washington University Institute for Clinical and Translational Sciences, recipient of a Clinical and Translational Sciences Award (UL1 RR024992) from the National Institutes of Health National Center for Research Resources, the Barnes-Jewish Hospital Foundation and the Richard J. Wilkinson Trust. We also thank Drs Michael K. Pasque and Kory J. Lavine for expertise and assistance with cardiac tissue acquisition and Dr David Christini for his assistance with Real-Time eXperiment Interface.
Funding Information:
This study was supported by the National Heart, Lung, and Blood Institute of the National Institutes of Health (NIH; R01 HL-034161 and R01 HL-066388 to Dr Nerbonne), the NIH National Center for Research Resources (UL1 RR024992 to the Institute for Clinical and Translational Sciences) and the American Heart Association (Individual Postdoctoral Fellowship to Dr Johnson). Drs Springer and Johnson were supported in part by institutional Training Grants (T32-HL007081 and T32-HL007275) from the National Heart, Lung, and Blood Institute of the NIH. None of these funding sources were involved in study design, data collection, data analyses, data interpretation, manuscript preparation or the decision to submit this article for consideration for publication.
Publisher Copyright:
© 2018 American Heart Association, Inc.
PY - 2018/1/1
Y1 - 2018/1/1
N2 - Background: Myocardial, transient, outward currents, Ito, have been shown to play pivotal roles in action potential (AP) repolarization and remodeling in animal models. The properties and contribution of Ito to left ventricular (LV) repolarization in the human heart, however, are poorly defined. Methods and Results: Whole-cell, voltage-clamp recordings, acquired at physiological (35°C to 37°C) temperatures, from myocytes isolated from the LV of nonfailing human hearts identified 2 distinct transient currents, Ito,fast (Ito,f) and Ito,slow (Ito,s), with significantly (P<0.0001) different rates of recovery from inactivation and pharmacological sensitives: Ito,f recovers in ≈10 ms, 100× faster than Ito,s, and is selectively blocked by the Kv4 channel toxin, SNX-482. Current-clamp experiments revealed regional differences in AP waveforms, notably a phase 1 notch in LV subepicardial myocytes. Dynamic clamp-mediated addition/removal of modeled human ventricular Ito,f, resulted in hyperpolarization or depolarization, respectively, of the notch potential, whereas slowing the rate of Ito,f inactivation resulted in AP collapse. AP-clamp experiments demonstrated that changes in notch potentials modified the time course and amplitudes of voltage-gated Ca2+ currents, ICa. In failing LV subepicardial myocytes, Ito,f was reduced and Ito,s was increased, notch and plateau potentials were depolarized (P<0.0001) and AP durations were prolonged (P<0.001). Conclusions: Ito,f and Ito,s are differentially expressed in nonfailing human LV, contributing to regional heterogeneities in AP waveforms. Ito,f regulates notch and plateau potentials and modulates the time course and amplitude of ICa. Slowing Ito,f inactivation results in dramatic AP shortening. Remodeling of Ito,f in failing human LV subepicardial myocytes attenuates transmural differences in AP waveforms.
AB - Background: Myocardial, transient, outward currents, Ito, have been shown to play pivotal roles in action potential (AP) repolarization and remodeling in animal models. The properties and contribution of Ito to left ventricular (LV) repolarization in the human heart, however, are poorly defined. Methods and Results: Whole-cell, voltage-clamp recordings, acquired at physiological (35°C to 37°C) temperatures, from myocytes isolated from the LV of nonfailing human hearts identified 2 distinct transient currents, Ito,fast (Ito,f) and Ito,slow (Ito,s), with significantly (P<0.0001) different rates of recovery from inactivation and pharmacological sensitives: Ito,f recovers in ≈10 ms, 100× faster than Ito,s, and is selectively blocked by the Kv4 channel toxin, SNX-482. Current-clamp experiments revealed regional differences in AP waveforms, notably a phase 1 notch in LV subepicardial myocytes. Dynamic clamp-mediated addition/removal of modeled human ventricular Ito,f, resulted in hyperpolarization or depolarization, respectively, of the notch potential, whereas slowing the rate of Ito,f inactivation resulted in AP collapse. AP-clamp experiments demonstrated that changes in notch potentials modified the time course and amplitudes of voltage-gated Ca2+ currents, ICa. In failing LV subepicardial myocytes, Ito,f was reduced and Ito,s was increased, notch and plateau potentials were depolarized (P<0.0001) and AP durations were prolonged (P<0.001). Conclusions: Ito,f and Ito,s are differentially expressed in nonfailing human LV, contributing to regional heterogeneities in AP waveforms. Ito,f regulates notch and plateau potentials and modulates the time course and amplitude of ICa. Slowing Ito,f inactivation results in dramatic AP shortening. Remodeling of Ito,f in failing human LV subepicardial myocytes attenuates transmural differences in AP waveforms.
KW - Brugada syndrome
KW - action potentials
KW - heart failure
KW - ion channels
KW - membrane potentials
KW - potassium
UR - http://www.scopus.com/inward/record.url?scp=85052228830&partnerID=8YFLogxK
U2 - 10.1161/CIRCEP.117.005914
DO - 10.1161/CIRCEP.117.005914
M3 - Article
C2 - 29311162
AN - SCOPUS:85052228830
SN - 1941-3149
VL - 11
JO - Circulation: Arrhythmia and Electrophysiology
JF - Circulation: Arrhythmia and Electrophysiology
IS - 1
M1 - e005914
ER -