Abstract

Bradykinesia is a term describing several manifestations of movement disruption caused by Parkinson’s disease (PD), including movement slowing, amplitude reduction, and gradual decrease of speed and amplitude over multiple repetitions of the same movement. Deep brain stimulation (DBS) of the subthalamic nucleus (STN) improves bradykinesia in patients with PD. We examined the effect of DBS on specific components of bradykinesia when applied at two locations within the STN, using signal processing techniques to identify the time course of amplitude and frequency of repeated hand pronation-supination movements performed by participants with and without PD. Stimulation at either location increased movement amplitude, increased frequency, and decreased variability, though not to the range observed in the control group. Amplitude and frequency showed decrement within trials, which was similar in PD and control groups and did not change with DBS. Decrement across trials, by contrast, differed between PD and control groups, and was reduced by stimulation. We conclude that DBS improves specific aspects of movement that are disrupted by PD, whereas it does not affect short-term decrement that could reflect muscular fatigue. NEW & NOTEWORTHY In this study, we examined different components of bradykinesia in patients with Parkinson’s disease (PD). We identified different components through signal processing techniques and their response to deep brain stimulation (DBS). We found that some components of bradykinesia respond to stimulation, whereas others do not. This knowledge advances our understanding of brain mechanisms that control movement speed and amplitude.

Original languageEnglish
Pages (from-to)870-878
Number of pages9
JournalJournal of neurophysiology
Volume132
Issue number3
DOIs
StatePublished - Sep 2024

Keywords

  • DBS
  • kinematics
  • motor control
  • movement
  • wearable sensors

Fingerprint

Dive into the research topics of 'Differential components of bradykinesia in Parkinson's disease revealed by deep brain stimulation'. Together they form a unique fingerprint.

Cite this