Differential antagonism of α-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid-preferring and kainate-preferring receptors by 2,3- benzodiazepines

T. J. Wilding, J. E. Huettner

Research output: Contribution to journalArticle

174 Scopus citations

Abstract

Whole-cell recordings were used to study the antagonism of α-amino-3- hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-preferring and kainate- preferring receptors by 2,3-benzodiazepines. Current through kainate- preferring receptors was recorded in rat dorsal root ganglion (DRG) neurons, whereas AMPA receptor current was measured in cultured neurons from rat cerebral cortex. In both cell types 2,3-benzodiazepines produced noncompetitive inhibition; however, antagonist potency was much higher against AMPA-preferring receptors than against kainate receptors. The most potent compound, 1-(4-aminophenyl)-3-methylcarbamyl-4-methyl-7,8- methylenedioxy-3,4-dihydro-5H-2,3-benzodiazepine (GYKI 53655), blocked AMPA receptor currents with an IC50 of approximately 1 μM. A second benzodiazepine, 1-(4-aminophenyl)-4-methyl-7,8-methylenedioxy-5H-2,3- benzodiazepine (GYKI 52466), was about 20-fold less potent at AMPA receptors (IC50 = 18 μM). Both drugs were markedly weaker against kainate currents in DRG neurons. At 200 μM, the highest concentration tested, GYKI 53655 and GYKI 52466 produced only 30-40% inhibition in DRG cells, suggesting that for both compounds the IC50 against kainate receptors is >200 μM. Our study suggests that GYKI 53655, at a concentration of approximately 10 μM, should produce >90% block of AMPA-preferring receptors but <5% inhibition of kainate-preferring receptors. Because the antagonism by this drug is noncompetitive, its effectiveness should not be influenced by phasic changes in transmitter concentration, making it an ideal compound for functional studies of the role of kainate and AMPA receptors in synaptic transmission.

Original languageEnglish
Pages (from-to)582-587
Number of pages6
JournalMolecular pharmacology
Volume47
Issue number3
StatePublished - Apr 5 1995

Fingerprint Dive into the research topics of 'Differential antagonism of α-amino-3-hydroxy-5-methyl-4- isoxazolepropionic acid-preferring and kainate-preferring receptors by 2,3- benzodiazepines'. Together they form a unique fingerprint.

  • Cite this