Differential admixture shapes morphological variation among invasive populations of the lizard Anolis sagrei

Research output: Contribution to journalArticlepeer-review

25 Scopus citations


The biological invasion of the lizard Anolis sagrei provides an opportunity to study evolutionary mechanisms that produce morphological differentiation among non-native populations. Because the A. sagrei invasion represents multiple native-range source populations, differential admixture as well as random genetic drift and natural selection, could shape morphological evolution during the invasion. Mitochondrial DNA (mtDNA) analyses reveal seven distinct native-range source populations for 10 introduced A. sagrei populations from Florida, Louisiana and Texas (USA), and Grand Cayman, with 2-5 native-range sources contributing to each non-native population. These introduced populations differ significantly in frequencies of haplotypes from different native-range sources and in body size, toepad-lamella number, and body shape. Variation among introduced populations for both lamella number and body shape is explained by differential admixture of various source populations; mean morphological values of introduced populations are correlated with the relative genetic contributions from different native-range source populations. The number of source populations contributing to an introduced population correlates with body size, which appears independent of the relative contributions of particular source populations. Thus, differential admixture of various native-range source populations explains morphological differences among introduced A. sagrei populations. Morphological differentiation among populations is compatible with the hypothesis of selective neutrality, although we are unable to test the hypothesis of interdemic selection among introductions from different native-range source populations.

Original languageEnglish
Pages (from-to)1579-1591
Number of pages13
JournalMolecular Ecology
Issue number8
StatePublished - Apr 2007


  • Admixture
  • Biological invasion
  • Morphological evolution
  • mtDNA
  • Multiple source populations
  • Random genetic drift


Dive into the research topics of 'Differential admixture shapes morphological variation among invasive populations of the lizard Anolis sagrei'. Together they form a unique fingerprint.

Cite this