TY - JOUR
T1 - Dietary salt promotes cognitive impairment through tau phosphorylation
AU - Faraco, Giuseppe
AU - Hochrainer, Karin
AU - Segarra, Steven G.
AU - Schaeffer, Samantha
AU - Santisteban, Monica M.
AU - Menon, Ajay
AU - Jiang, Hong
AU - Holtzman, David M.
AU - Anrather, Josef
AU - Iadecola, Costantino
N1 - Publisher Copyright:
© 2019, The Author(s), under exclusive licence to Springer Nature Limited.
PY - 2019/10/31
Y1 - 2019/10/31
N2 - Dietary habits and vascular risk factors promote both Alzheimer’s disease and cognitive impairment caused by vascular factors1–3. Furthermore, accumulation of hyperphosphorylated tau, a microtubule-associated protein and a hallmark of Alzheimer’s pathology4, is also linked to vascular cognitive impairment5,6. In mice, a salt-rich diet leads to cognitive dysfunction associated with a nitric oxide deficit in cerebral endothelial cells and cerebral hypoperfusion7. Here we report that dietary salt induces hyperphosphorylation of tau followed by cognitive dysfunction in mice, and that these effects are prevented by restoring endothelial nitric oxide production. The nitric oxide deficiency reduces neuronal calpain nitrosylation and results in enzyme activation, which, in turn, leads to tau phosphorylation by activating cyclin-dependent kinase 5. Salt-induced cognitive impairment is not observed in tau-null mice or in mice treated with anti-tau antibodies, despite persistent cerebral hypoperfusion and neurovascular dysfunction. These findings identify a causal link between dietary salt, endothelial dysfunction and tau pathology, independent of haemodynamic insufficiency. Avoidance of excessive salt intake and maintenance of vascular health may help to stave off the vascular and neurodegenerative pathologies that underlie dementia in the elderly.
AB - Dietary habits and vascular risk factors promote both Alzheimer’s disease and cognitive impairment caused by vascular factors1–3. Furthermore, accumulation of hyperphosphorylated tau, a microtubule-associated protein and a hallmark of Alzheimer’s pathology4, is also linked to vascular cognitive impairment5,6. In mice, a salt-rich diet leads to cognitive dysfunction associated with a nitric oxide deficit in cerebral endothelial cells and cerebral hypoperfusion7. Here we report that dietary salt induces hyperphosphorylation of tau followed by cognitive dysfunction in mice, and that these effects are prevented by restoring endothelial nitric oxide production. The nitric oxide deficiency reduces neuronal calpain nitrosylation and results in enzyme activation, which, in turn, leads to tau phosphorylation by activating cyclin-dependent kinase 5. Salt-induced cognitive impairment is not observed in tau-null mice or in mice treated with anti-tau antibodies, despite persistent cerebral hypoperfusion and neurovascular dysfunction. These findings identify a causal link between dietary salt, endothelial dysfunction and tau pathology, independent of haemodynamic insufficiency. Avoidance of excessive salt intake and maintenance of vascular health may help to stave off the vascular and neurodegenerative pathologies that underlie dementia in the elderly.
UR - http://www.scopus.com/inward/record.url?scp=85074216165&partnerID=8YFLogxK
U2 - 10.1038/s41586-019-1688-z
DO - 10.1038/s41586-019-1688-z
M3 - Article
C2 - 31645758
AN - SCOPUS:85074216165
SN - 0028-0836
VL - 574
SP - 686
EP - 690
JO - Nature
JF - Nature
IS - 7780
ER -