TY - JOUR
T1 - Dietary omega-3 fatty acid supplementation increases the rate of muscle protein synthesis in older adults
T2 - A randomized controlled trial
AU - Smith, Gordon I.
AU - Atherton, Philip
AU - Reeds, Dominic N.
AU - Mohammed, B. Selma
AU - Rankin, Debbie
AU - Rennie, Michael J.
AU - Mittendorfer, Bettina
PY - 2011/2/1
Y1 - 2011/2/1
N2 - Background: Loss of muscle mass with aging is a major public health concern. Omega-3 (n-3) fatty acids stimulate protein anabolism in animals and might therefore be useful for the treatment of sarcopenia. However, the effect of omega-3 fatty acids on human protein metabolism is unknown. Objective: The objective of this study was to evaluate the effect of omega-3 fatty acid supplementation on the rate of muscle protein synthesis in older adults. Design: Sixteen healthy, older adults were randomly assigned to receive either omega-3 fatty acids or corn oil for 8 wk. The rate of muscle protein synthesis and the phosphorylation of key elements of the anabolic signaling pathway were evaluated before and after supplementation during basal, postabsorptive conditions and during a hyperaminoacidemic-hyperinsulinemic clamp. Results: Corn oil supplementation had no effect on the muscle protein synthesis rate and the extent of anabolic signaling element phosphorylation in muscle. Omega-3 fatty acid supplementation had no effect on the basal rate of muscle protein synthesis (mean ± SEM: 0.051 ± 0.005%/h compared with 0.053 ± 0.008%/h before and after supplementation, respectively; P = 0.80) but augmented the hyperaminoacidemia-hyperinsulinemia-induced increase in the rate of muscle protein synthesis (from 0.009 ± 0.005%/h above basal values to 0.031 ± 0.003%/h above basal values; P < 0.01), which was accompanied by greater increases in muscle mTORSer2448 (P = 0.08) and p70s6k Thr389 (P < 0.01) phosphorylation. Conclusion: Omega-3 fatty acids stimulate muscle protein synthesis in older adults and may be useful for the prevention and treatment of sarcopenia. This trial was registered at clinical trials.gov as NCT00794079.
AB - Background: Loss of muscle mass with aging is a major public health concern. Omega-3 (n-3) fatty acids stimulate protein anabolism in animals and might therefore be useful for the treatment of sarcopenia. However, the effect of omega-3 fatty acids on human protein metabolism is unknown. Objective: The objective of this study was to evaluate the effect of omega-3 fatty acid supplementation on the rate of muscle protein synthesis in older adults. Design: Sixteen healthy, older adults were randomly assigned to receive either omega-3 fatty acids or corn oil for 8 wk. The rate of muscle protein synthesis and the phosphorylation of key elements of the anabolic signaling pathway were evaluated before and after supplementation during basal, postabsorptive conditions and during a hyperaminoacidemic-hyperinsulinemic clamp. Results: Corn oil supplementation had no effect on the muscle protein synthesis rate and the extent of anabolic signaling element phosphorylation in muscle. Omega-3 fatty acid supplementation had no effect on the basal rate of muscle protein synthesis (mean ± SEM: 0.051 ± 0.005%/h compared with 0.053 ± 0.008%/h before and after supplementation, respectively; P = 0.80) but augmented the hyperaminoacidemia-hyperinsulinemia-induced increase in the rate of muscle protein synthesis (from 0.009 ± 0.005%/h above basal values to 0.031 ± 0.003%/h above basal values; P < 0.01), which was accompanied by greater increases in muscle mTORSer2448 (P = 0.08) and p70s6k Thr389 (P < 0.01) phosphorylation. Conclusion: Omega-3 fatty acids stimulate muscle protein synthesis in older adults and may be useful for the prevention and treatment of sarcopenia. This trial was registered at clinical trials.gov as NCT00794079.
UR - http://www.scopus.com/inward/record.url?scp=79251499260&partnerID=8YFLogxK
U2 - 10.3945/ajcn.110.005611
DO - 10.3945/ajcn.110.005611
M3 - Article
C2 - 21159787
AN - SCOPUS:79251499260
SN - 0002-9165
VL - 93
SP - 402
EP - 412
JO - American Journal of Clinical Nutrition
JF - American Journal of Clinical Nutrition
IS - 2
ER -