TY - JOUR
T1 - Diels-alder reaction for tumor pretargeting
T2 - In vivo chemistry can boost tumor radiation dose compared with directly labeled antibody
AU - Rossin, Raffaella
AU - Läppchen, Tilman
AU - Van Den Bosch, Sandra M.
AU - Laforest, Richard
AU - Robillard, Marc S.
N1 - Copyright:
Copyright 2014 Elsevier B.V., All rights reserved.
PY - 2013/11/1
Y1 - 2013/11/1
N2 - Current pretargeting systems use noncovalent biologic interactions, which are prone to immunogenicity. We previously developed a novel approach based on the bioorthogonal reaction between a radiolabeled tetrazine and an antibody-conjugated trans-cyclooctene (TCO). However, the tumor-to-blood ratio was low due to reaction with freely circulating antibody-TCO. Methods: Here we developed 2 tetrazine-functionalized clearing agents that enable rapid reaction with and removal of a TCO-tagged antibody (CC49) from blood. Next, we incorporated this approach into an optimized pretargeting protocol in LS174T-bearing mice. Then we compared the pretargeted 177Lu-labeled tetrazine with 177Lu-labeled CC49. The biodistribution data were used for mouse and human dosimetry calculations. Results: The use of a clearing agent led to a doubling of the tetrazine tumor uptake and a 125-fold improvement of the tumor-to-blood ratio at 3 h after tetrazine injection. Mouse dosimetry suggested that this should allow for an 8-fold higher tumor dose than is possible with nonpretargeted radioimmunotherapy. Also, humans treated with CC49-TCO-pretargeted 177Lu-tetrazine would receive a dose to nontarget tissues 1 to 2 orders of magnitude lower than with directly labeled CC49. Conclusion: The in vivo performance of chemical pretargeting falls within the range of results obtained for the clinically validated pretargeting approaches in mice, with the advantage of potentially allowing for fractionated radiotherapy as a result of a lower likelihood of immunogenicity. These findings demonstrate that biologic pretargeting concepts can be translated to rapid bioorthogonal chemical approaches with retained potential.
AB - Current pretargeting systems use noncovalent biologic interactions, which are prone to immunogenicity. We previously developed a novel approach based on the bioorthogonal reaction between a radiolabeled tetrazine and an antibody-conjugated trans-cyclooctene (TCO). However, the tumor-to-blood ratio was low due to reaction with freely circulating antibody-TCO. Methods: Here we developed 2 tetrazine-functionalized clearing agents that enable rapid reaction with and removal of a TCO-tagged antibody (CC49) from blood. Next, we incorporated this approach into an optimized pretargeting protocol in LS174T-bearing mice. Then we compared the pretargeted 177Lu-labeled tetrazine with 177Lu-labeled CC49. The biodistribution data were used for mouse and human dosimetry calculations. Results: The use of a clearing agent led to a doubling of the tetrazine tumor uptake and a 125-fold improvement of the tumor-to-blood ratio at 3 h after tetrazine injection. Mouse dosimetry suggested that this should allow for an 8-fold higher tumor dose than is possible with nonpretargeted radioimmunotherapy. Also, humans treated with CC49-TCO-pretargeted 177Lu-tetrazine would receive a dose to nontarget tissues 1 to 2 orders of magnitude lower than with directly labeled CC49. Conclusion: The in vivo performance of chemical pretargeting falls within the range of results obtained for the clinically validated pretargeting approaches in mice, with the advantage of potentially allowing for fractionated radiotherapy as a result of a lower likelihood of immunogenicity. These findings demonstrate that biologic pretargeting concepts can be translated to rapid bioorthogonal chemical approaches with retained potential.
KW - Clearing agent
KW - Diels-Alder
KW - Dosimetry
KW - Pretargeting
UR - http://www.scopus.com/inward/record.url?scp=84891690168&partnerID=8YFLogxK
U2 - 10.2967/jnumed.113.123745
DO - 10.2967/jnumed.113.123745
M3 - Article
C2 - 24092936
AN - SCOPUS:84891690168
VL - 54
SP - 1989
EP - 1995
JO - Journal of Nuclear Medicine
JF - Journal of Nuclear Medicine
SN - 0161-5505
IS - 11
ER -