TY - JOUR
T1 - Diazoxide maintenance of myocyte volume and contractility during stress
T2 - Evidence for a non-sarcolemmal KATP channel location
AU - Sellitto, Angela D.
AU - Maffit, Sara K.
AU - Al-Dadah, Ashraf S.
AU - Zhang, Haixia
AU - Schuessler, Richard B.
AU - Nichols, Colin G.
AU - Lawton, Jennifer S.
N1 - Funding Information:
Supported by the American Heart Association Beginning Grant in Aid 0565514Z (JSL) and the Thoracic Surgery Foundation for Research and Education Nina Starr Braunwald Career Development Award (JSL).
PY - 2010/11
Y1 - 2010/11
N2 - Objective: Animal and human myocytes demonstrate significant swelling and reduced contractility during exposure to stress (metabolic inhibition, hyposmotic stress, or hyperkalemic cardioplegia), and these detrimental consequences may be inhibited by the addition of diazoxide (adenosine triphosphate-sensitive potassium channel opener) via an unknown mechanism. Both SUR1 and SUR2A subunits have been localized to the heart, and mouse sarcolemmal adenosine triphosphate-sensitive potassium channels are composed of SUR2A/Kir6.2 subunits in the ventricle and SUR1/Kir6.2 subunits in the atria. This study was performed to localize the mechanism of diazoxide by direct probing of sarcolemmal adenosine triphosphate-sensitive potassium channel current and by genetic deletion of channel subunits. Methods: Sarcolemmal adenosine triphosphate-sensitive potassium channel current was recorded in isolated wild-type ventricular mouse myocytes during exposure to Tyrode's solution, Tyrode's + 100 μmol/L diazoxide, hyperkalemic cardioplegia, cardioplegia + diazoxide, cardioplegia + 100 μmol/L pinacidil, or metabolic inhibition using whole-cell voltage clamp (N = 7-12 cells per group). Ventricular myocyte volume was measured from SUR1(-/-) and wild-type mice during exposure to control solution, hyperkalemic cardioplegia, or cardioplegia + 100 μmol/L diazoxide (N = 7-10 cells per group). Results: Diazoxide did not increase sarcolemmal adenosine triphosphate-sensitive potassium current in wild-type myocytes, although they demonstrated significant swelling during exposure to cardioplegia that was prevented by diazoxide. SUR1(-/-) myocytes also demonstrated significant swelling during exposure to cardioplegia, but this was not altered by diazoxide. Conclusions: Diazoxide does not open the ventricular sarcolemmal adenosine triphosphate-sensitive potassium channel but provides volume homeostasis via an SUR1-dependent pathway in mouse ventricular myocytes, supporting a mechanism of action distinct from sarcolemmal adenosine triphosphate-sensitive potassium channel activation.
AB - Objective: Animal and human myocytes demonstrate significant swelling and reduced contractility during exposure to stress (metabolic inhibition, hyposmotic stress, or hyperkalemic cardioplegia), and these detrimental consequences may be inhibited by the addition of diazoxide (adenosine triphosphate-sensitive potassium channel opener) via an unknown mechanism. Both SUR1 and SUR2A subunits have been localized to the heart, and mouse sarcolemmal adenosine triphosphate-sensitive potassium channels are composed of SUR2A/Kir6.2 subunits in the ventricle and SUR1/Kir6.2 subunits in the atria. This study was performed to localize the mechanism of diazoxide by direct probing of sarcolemmal adenosine triphosphate-sensitive potassium channel current and by genetic deletion of channel subunits. Methods: Sarcolemmal adenosine triphosphate-sensitive potassium channel current was recorded in isolated wild-type ventricular mouse myocytes during exposure to Tyrode's solution, Tyrode's + 100 μmol/L diazoxide, hyperkalemic cardioplegia, cardioplegia + diazoxide, cardioplegia + 100 μmol/L pinacidil, or metabolic inhibition using whole-cell voltage clamp (N = 7-12 cells per group). Ventricular myocyte volume was measured from SUR1(-/-) and wild-type mice during exposure to control solution, hyperkalemic cardioplegia, or cardioplegia + 100 μmol/L diazoxide (N = 7-10 cells per group). Results: Diazoxide did not increase sarcolemmal adenosine triphosphate-sensitive potassium current in wild-type myocytes, although they demonstrated significant swelling during exposure to cardioplegia that was prevented by diazoxide. SUR1(-/-) myocytes also demonstrated significant swelling during exposure to cardioplegia, but this was not altered by diazoxide. Conclusions: Diazoxide does not open the ventricular sarcolemmal adenosine triphosphate-sensitive potassium channel but provides volume homeostasis via an SUR1-dependent pathway in mouse ventricular myocytes, supporting a mechanism of action distinct from sarcolemmal adenosine triphosphate-sensitive potassium channel activation.
UR - http://www.scopus.com/inward/record.url?scp=77957989482&partnerID=8YFLogxK
U2 - 10.1016/j.jtcvs.2010.07.047
DO - 10.1016/j.jtcvs.2010.07.047
M3 - Article
C2 - 20804990
AN - SCOPUS:77957989482
SN - 0022-5223
VL - 140
SP - 1153
EP - 1159
JO - Journal of Thoracic and Cardiovascular Surgery
JF - Journal of Thoracic and Cardiovascular Surgery
IS - 5
ER -