Diastolic ventricular-vascular stiffness and relaxation relation: Elucidation of coupling via pressure phase plane-derived indexes

Charles S. Chung, Audrey Strunc, Rachel Oliver, Sándor J. Kovács

Research output: Contribution to journalArticle

18 Scopus citations

Abstract

Because systole and diastole are coupled and systolic ventricular-vascular coupling has been characterized, we hypothesize that diastolic ventricular-vascular coupling (DVVC) exists and can be characterized in terms of relaxation and stiffness. To characterize and elucidate DVVC mechanisms, we introduce time derivative of pressure (dP/dt) vs. time-varying pressure [P(t)] (pressure phase plane, PPP)-derived analogs of ventricular and vascular "stiffness" and relaxation parameters. Although volume change (dV) = 0 during isovolumic periods, and time-varying left ventricular (LV) stiffness, typically expressed as change in pressure per unit change in volume (dP/dV), is undefined, our formulation allows determination of a PPP-derived stiffness analog during isovolumic contraction and relaxation. Similarly, an aortic stiffness analog is also derivable from the PPP. LV relaxation was characterized via τ, the time constant of isovolumic relaxation, and vascular (aortic pressure decay) relaxation was characterized in terms of its equivalent (windkessel) exponential decay time constant κ. The results show that PPP-derived systolic and diastolic ventricular and vascular stiffness are strongly coupled [KAo+ = 1.71(KLV+) +154, r = 0.86; KAo- = 0.677 (KLV-) - 5.53, r = 0.86]. In support of the DVVC hypothesis, a strong linear correlation between relaxation (rate of pressure decay) indexes κ and τ (κ = 9.89τ - 90.3, r = 0.81) was also observed. The correlations observed underscore the role of long-term, steady-state DVVC as a diastolic function determinant. Awareness of the PPP-derived DVVC parameters provides insight into mechanisms and facilitates quantification of arterial stiffening and associated increase in diastolic chamber stiffness. The PPP method provides a tool for quantitative assessment and determination of the functional coupling of the vasculature to diastolic function.

Original languageEnglish
Pages (from-to)H2415-H2423
JournalAmerican Journal of Physiology - Heart and Circulatory Physiology
Volume291
Issue number5
DOIs
StatePublished - Nov 24 2006

Keywords

  • Ventricular-vascular coupling

Fingerprint Dive into the research topics of 'Diastolic ventricular-vascular stiffness and relaxation relation: Elucidation of coupling via pressure phase plane-derived indexes'. Together they form a unique fingerprint.

  • Cite this