TY - JOUR
T1 - Development of a single-stranded DNA-binding protein fluorescent fusion toolbox
AU - Dubiel, Katarzyna
AU - Henry, Camille
AU - Spenkelink, Lisanne M.
AU - Kozlov, Alexander G.
AU - Wood, Elizabeth A.
AU - Jergic, Slobodan
AU - Dixon, Nicholas E.
AU - van Oijen, Antoine M.
AU - Cox, Michael M.
AU - Lohman, Timothy M.
AU - Sandler, Steven J.
AU - Keck, James L.
N1 - Publisher Copyright:
© The Author(s) 2020. Published by Oxford University Press on behalf of Nucleic Acids Research. This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact [email protected]
PY - 2020
Y1 - 2020
N2 - Bacterial single-stranded DNA-binding proteins (SSBs) bind single-stranded DNA and help to recruit heterologous proteins to their sites of action. SSBs perform these essential functions through a modular structural architecture: the N-terminal domain comprises a DNA binding/tetramerization element whereas the C-terminus forms an intrinsically disordered linker (IDL) capped by a protein-interacting SSB-Ct motif. Here we examine the activities of SSB-IDL fusion proteins in which fluorescent domains are inserted within the IDL of Escherichia coli SSB. The SSB-IDL fusions maintain DNA and protein binding activities in vitro, although cooperative DNA binding is impaired. In contrast, an SSB variant with a fluorescent protein attached directly to the C-terminus that is similar to fusions used in previous studies displayed dysfunctional protein interaction activity. The SSB-IDL fusions are readily visualized in single-molecule DNA replication reactions. Escherichia coli strains in which wildtype SSB is replaced by SSB-IDL fusions are viable and display normal growth rates and fitness. The SSB-IDL fusions form detectible SSB foci in cells with frequencies mirroring previously examined fluorescent DNA replication fusion proteins. Cells expressing SSB-IDL fusions are sensitized to some DNA damaging agents. The results highlight the utility of SSB-IDL fusions for biochemical and cellular studies of genome maintenance reactions.
AB - Bacterial single-stranded DNA-binding proteins (SSBs) bind single-stranded DNA and help to recruit heterologous proteins to their sites of action. SSBs perform these essential functions through a modular structural architecture: the N-terminal domain comprises a DNA binding/tetramerization element whereas the C-terminus forms an intrinsically disordered linker (IDL) capped by a protein-interacting SSB-Ct motif. Here we examine the activities of SSB-IDL fusion proteins in which fluorescent domains are inserted within the IDL of Escherichia coli SSB. The SSB-IDL fusions maintain DNA and protein binding activities in vitro, although cooperative DNA binding is impaired. In contrast, an SSB variant with a fluorescent protein attached directly to the C-terminus that is similar to fusions used in previous studies displayed dysfunctional protein interaction activity. The SSB-IDL fusions are readily visualized in single-molecule DNA replication reactions. Escherichia coli strains in which wildtype SSB is replaced by SSB-IDL fusions are viable and display normal growth rates and fitness. The SSB-IDL fusions form detectible SSB foci in cells with frequencies mirroring previously examined fluorescent DNA replication fusion proteins. Cells expressing SSB-IDL fusions are sensitized to some DNA damaging agents. The results highlight the utility of SSB-IDL fusions for biochemical and cellular studies of genome maintenance reactions.
UR - http://www.scopus.com/inward/record.url?scp=85086525296&partnerID=8YFLogxK
U2 - 10.1093/NAR/GKAA320
DO - 10.1093/NAR/GKAA320
M3 - Article
C2 - 32374866
AN - SCOPUS:85086525296
SN - 0305-1048
VL - 48
SP - 6053
EP - 6067
JO - Nucleic acids research
JF - Nucleic acids research
IS - 11
ER -