Development of a radiolabeled irreversible peptide ligand for PET imaging of vascular endothelial growth factor

Bernadette V. Marquez, Oluwatayo F. Ikotun, Jesse J. Parry, Buck E. Rogers, Claude F. Meares, Suzanne E. Lapi

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


Imaging agents based on peptide probes have desirable pharmacokinetic properties provided that they have high affinities for their target in vivo. An approach to improve a peptide ligand's affinity for its target is to make this interaction covalent and irreversible. For this purpose, we evaluated a 64Cu-labeled affinity peptide tag, 64Cu- L19K-(5-fluoro-2,4-dinitrobenzene) (64Cu-L19K-FDNB), which binds covalently and irreversibly to vascular endothelial growth factor (VEGF) as a PET imaging agent. We compared the in vivo properties of 64Cu-L19K- FDNB in VEGF-expressing tumor xenografts with its noncovalent binding analogs, 64Cu-L19K-(2,4-dinitrophenyl) (64Cu-L19K-DNP) and 64Cu-L19K. Methods: The L19K peptide (GGNECDIARMWEWECFERK-CONH 2) was constructed with 1,4,7-triazacyclononane-1,4,7-triacetic acid at the N terminus for radiolabeling with 64Cu with a polyethylene glycol spacer between peptide and chelate. 1,5-difluoro-2,4-dinitrobenzene was conjugated at the C-terminal lysine for cross-linking to VEGF, resulting in L19K-FDNB. 64Cu-L19K-FDNB was assayed for covalent binding to VEGF in vitro. As a control, L19K was conjugated to 1-fluoro-2,4-dinitrobenzene, resulting in L19K-DNP. PET imaging and biodistribution studies of 64Cu-L19K-FDNB, 64Cu-L19K-DNP, and the native 64Cu-L19K were compared in HCT-116 xenografts. Blocking studies of 64Cu-L19K-FDNB was performed with a coinjection of excess unlabeled L19K-FDNB. Results: In vitro binding studies confirmed the covalent and irreversible binding of 64Cu-L19K-FDNB to VEGF, whereas 64Cu-L19K-DNP and 64Cu-L19K did not bind covalently. PET imaging showed higher tumor uptake with 64Cu-L19K-FDNB than with 64Cu-L19K-DNP and 64Cu-L19K, with mean standardized uptake values of 0.62 ± 0.05, 0.18 ± 0.06, and 0.34 ± 0.14, respectively, at 24 h after injection (P < 0.05), and 0.53 ± 0.05, 0.32 ± 0.14, and 0.30 ± 0.09, respectively, at 48 h after injection (P < 0.05). Blocking studies with 64Cu-L19K-FDNB in the presence of excess unlabeled peptide showed a 53% reduction in tumor uptake at 48 h after injection. Conclusion: In this proof-of-concept study, the use of a covalent binding peptide ligand against VEGF improves tracer accumulation at the tumor site in vivo, compared with its noncovalent binding peptide analogs. This technique is a promising tool to enhance the potency of peptide probes as imaging agents.

Original languageEnglish
Pages (from-to)1029-1034
Number of pages6
JournalJournal of Nuclear Medicine
Issue number6
StatePublished - Jun 1 2014


  • Covalent
  • Molecular imaging
  • PET
  • Peptide
  • VEGF


Dive into the research topics of 'Development of a radiolabeled irreversible peptide ligand for PET imaging of vascular endothelial growth factor'. Together they form a unique fingerprint.

Cite this