TY - JOUR
T1 - Development of a macromolecular diffusion pathway in the lens
AU - Shestopalov, Valery I.
AU - Bassnett, Steven
PY - 2003/10/15
Y1 - 2003/10/15
N2 - The mammalian lens consists of an aged core of quiescent cells enveloped by a layer of synthetically active cells. Abundant gap junctions within and between these cell populations ensure that the lens functions as an electrical syncytium and facilitates the exchange of small molecules between surface and core cells. In the present study, we utilized an in vivo mouse model to characterize the properties of an additional pathway, permeable to macromolecules, which co-exists with gap-junction-mediated communication in the lens core. The TgN(GFPU)5Nagy strain of mice carries a green fluorescent protein (GFP) transgene. In the lenses of hemizyous animals, GFP was expressed in a variegated fashion, allowing diffusion of GFP to be visualized directly. Early in development, GFP expression in scattered fiber cells resulted in a checkerboard fluorescence pattern in the lens. However, at E15 and later, the centrally located fiber cells became uniformly fluorescent. In the adult lens, a superficial layer of cells, approximately 100 μm thick, retained the original mosaic fluorescence pattern, but the remainder, and majority, of the tissue was uniformly fluorescent. We reasoned th at at the border between the two distinct labeling patterns, a macromolecule-permeable intercellular pathway was established. To test this hypothesis, we microinjected 10 kDa fluorescent dextran into individual fiber cells and followed its diffusion by time-lapse microscopy. Injections at depths of >100 μm resulted in intercellular diffusion of dextran from injected cells. By contrast, when injections were made into superficial fiber cells, the injected cell invariably retained the dextran. Together, these data suggest that, in addition to being coupled by gap junctions, cells in the lens core are interconnected by a macromolecule-permeable pathway. At all ages examined, a significant proportion of the nucleated fiber cell population of the lens was located within this region of the lens.
AB - The mammalian lens consists of an aged core of quiescent cells enveloped by a layer of synthetically active cells. Abundant gap junctions within and between these cell populations ensure that the lens functions as an electrical syncytium and facilitates the exchange of small molecules between surface and core cells. In the present study, we utilized an in vivo mouse model to characterize the properties of an additional pathway, permeable to macromolecules, which co-exists with gap-junction-mediated communication in the lens core. The TgN(GFPU)5Nagy strain of mice carries a green fluorescent protein (GFP) transgene. In the lenses of hemizyous animals, GFP was expressed in a variegated fashion, allowing diffusion of GFP to be visualized directly. Early in development, GFP expression in scattered fiber cells resulted in a checkerboard fluorescence pattern in the lens. However, at E15 and later, the centrally located fiber cells became uniformly fluorescent. In the adult lens, a superficial layer of cells, approximately 100 μm thick, retained the original mosaic fluorescence pattern, but the remainder, and majority, of the tissue was uniformly fluorescent. We reasoned th at at the border between the two distinct labeling patterns, a macromolecule-permeable intercellular pathway was established. To test this hypothesis, we microinjected 10 kDa fluorescent dextran into individual fiber cells and followed its diffusion by time-lapse microscopy. Injections at depths of >100 μm resulted in intercellular diffusion of dextran from injected cells. By contrast, when injections were made into superficial fiber cells, the injected cell invariably retained the dextran. Together, these data suggest that, in addition to being coupled by gap junctions, cells in the lens core are interconnected by a macromolecule-permeable pathway. At all ages examined, a significant proportion of the nucleated fiber cell population of the lens was located within this region of the lens.
KW - Cell-cell communications
KW - Green fluorescent protein
KW - Lens
KW - Syncytium
KW - Tissue mosaicism
UR - http://www.scopus.com/inward/record.url?scp=0242319631&partnerID=8YFLogxK
U2 - 10.1242/jcs.00738
DO - 10.1242/jcs.00738
M3 - Article
C2 - 12953070
AN - SCOPUS:0242319631
SN - 0021-9533
VL - 116
SP - 4191
EP - 4199
JO - Journal of cell science
JF - Journal of cell science
IS - 20
ER -