TY - JOUR
T1 - Development and Validation of a Bayesian Network Method to Detect External Beam Radiation Therapy Physician Order Errors
AU - Chang, Xiao
AU - Li, H. Harold
AU - Kalet, Alan M.
AU - Yang, Deshan
N1 - Funding Information:
This work was supported by the Agency for Health Care Research and Quality (grant number R01-HS022888). This work was supported by the Agency for Health Care Research and Quality (grant number R01-HS022888).
Publisher Copyright:
© 2019 Elsevier Inc.
PY - 2019/10/1
Y1 - 2019/10/1
N2 - Purpose: To investigate a Bayesian network (BN)-based method to detect errors in external beam radiation therapy physician orders. Methods and Materials: A total of 4431 external beam radiation therapy orders from 2008 to 2017 at the authors’ institution were obtained from clinical treatment management systems and divided into 3 groups: single prescription, concurrent boost, and sequential boost. Multiple BNs were developed for each group to detect errors in new orders using joint posterior probabilities of the order parameters, given disease information. Each BN was trained with a group of orders using a Bayesian learning algorithm. A procedure was developed to select the optimal BN for each treatment site in each group and to determine site-specific parameters and error detection thresholds. Potential clinical errors, created both manually and automatically, were applied to test error detection performance. Results: The average true-positive rate (TPR) and false-positive rate (FPR) of error detection were 95.72% and 1.99%, respectively, for the single-prescription cohort with 9 treatment sites. For the concurrent-boost cohort, the TPR and FPR were 92.94% and 14.53%, respectively. For the sequential-boost cohort, the TPR and FPR were 100% and 9.48%, respectively, for the prescribed dose values and 100% and 4.34%, respectively, for the remaining order parameters. For the patient simulation and imaging parameters for 9 treatment sites, the TPR and FPR were 100% and 4.96%, respectively. Conclusions: The probabilistic BN method was able to perform physician order error detection at a higher accuracy than previously reported in a variety of complex prescription instances, thus warranting further development in incorporating BNs into clinical error detection tools to assist manual physician order checks.
AB - Purpose: To investigate a Bayesian network (BN)-based method to detect errors in external beam radiation therapy physician orders. Methods and Materials: A total of 4431 external beam radiation therapy orders from 2008 to 2017 at the authors’ institution were obtained from clinical treatment management systems and divided into 3 groups: single prescription, concurrent boost, and sequential boost. Multiple BNs were developed for each group to detect errors in new orders using joint posterior probabilities of the order parameters, given disease information. Each BN was trained with a group of orders using a Bayesian learning algorithm. A procedure was developed to select the optimal BN for each treatment site in each group and to determine site-specific parameters and error detection thresholds. Potential clinical errors, created both manually and automatically, were applied to test error detection performance. Results: The average true-positive rate (TPR) and false-positive rate (FPR) of error detection were 95.72% and 1.99%, respectively, for the single-prescription cohort with 9 treatment sites. For the concurrent-boost cohort, the TPR and FPR were 92.94% and 14.53%, respectively. For the sequential-boost cohort, the TPR and FPR were 100% and 9.48%, respectively, for the prescribed dose values and 100% and 4.34%, respectively, for the remaining order parameters. For the patient simulation and imaging parameters for 9 treatment sites, the TPR and FPR were 100% and 4.96%, respectively. Conclusions: The probabilistic BN method was able to perform physician order error detection at a higher accuracy than previously reported in a variety of complex prescription instances, thus warranting further development in incorporating BNs into clinical error detection tools to assist manual physician order checks.
UR - http://www.scopus.com/inward/record.url?scp=85068478418&partnerID=8YFLogxK
U2 - 10.1016/j.ijrobp.2019.05.034
DO - 10.1016/j.ijrobp.2019.05.034
M3 - Article
C2 - 31158426
AN - SCOPUS:85068478418
SN - 0360-3016
VL - 105
SP - 423
EP - 431
JO - International Journal of Radiation Oncology Biology Physics
JF - International Journal of Radiation Oncology Biology Physics
IS - 2
ER -