TY - JOUR
T1 - Detection of Post-Replicative Gaps Accumulation and Repair in Human Cells using the DNA Fiber Assay
AU - Martins, Davi J.
AU - Tirman, Stephanie
AU - Quinet, Annabel
AU - Menck, Carlos F.M.
N1 - Funding Information:
The work in C.F.M.M. laboratory is supported by Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, São Paulo, Brazil, Grants #2019/19435-3, #2013/08028-1 and 2017/05680-0) under the International Collaboration Research from FAPESP and The Netherlands Organization for Scientific Research (NWO, The Netherlands); Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, Brasília, DF, Brazil, Grants # 308868/2018-8] and Coordenação de Aperfeiçoamento de Pessoal do Ensino Superior (CAPES, Brasília, DF, Brazil, Finance Code 001).
Funding Information:
The work in C.F.M.M. laboratory is supported by Funda??o de Amparo ? Pesquisa do Estado de S?o Paulo (FAPESP, S?o Paulo, Brazil, Grants #2019/19435-3, #2013/08028-1 and 2017/05680-0) under the International Collaboration Research from FAPESP and The Netherlands Organization for Scientific Research (NWO, The Netherlands); Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico (CNPq, Bras?lia, DF, Brazil, Grants # 308868/2018-8] and Coordena??o de Aperfei?oamento de Pessoal do Ensino Superior (CAPES, Bras?lia, DF, Brazil, Finance Code 001).
Publisher Copyright:
© 2022 JoVE Journal of Visualized Experiments.
PY - 2022/2
Y1 - 2022/2
N2 - The DNA fiber assay is a simple and robust method for the analysis of replication fork dynamics, based on the immunodetection of nucleotide analogs that are incorporated during DNA synthesis in human cells. However, this technique has a limited resolution of a few thousand kilobases. Consequently, post-replicative single-stranded DNA (ssDNA) gaps as small as a few hundred bases are not detectable by the standard assay. Here, we describe a modified version of the DNA fiber assay that utilizes the S1 nuclease, an enzyme that specifically cleaves ssDNA. In the presence of post-replicative ssDNA gaps, the S1 nuclease will target and cleave the gaps, generating shorter tracts that can be used as a read-out for ssDNA gaps on ongoing forks. These post-replicative ssDNA gaps are formed when damaged DNA is replicated discontinuously. They can be repaired via mechanisms uncoupled from genome replication, in a process known as gap-filling or post-replicative repair. Because gap-filling mechanisms involve DNA synthesis independent of the S phase, alterations in the DNA fiber labeling scheme can also be employed to monitor gap-filling events. Altogether, these modifications of the DNA fiber assay are powerful strategies to understand how post-replicative gaps are formed and filled in the genome of human cells.
AB - The DNA fiber assay is a simple and robust method for the analysis of replication fork dynamics, based on the immunodetection of nucleotide analogs that are incorporated during DNA synthesis in human cells. However, this technique has a limited resolution of a few thousand kilobases. Consequently, post-replicative single-stranded DNA (ssDNA) gaps as small as a few hundred bases are not detectable by the standard assay. Here, we describe a modified version of the DNA fiber assay that utilizes the S1 nuclease, an enzyme that specifically cleaves ssDNA. In the presence of post-replicative ssDNA gaps, the S1 nuclease will target and cleave the gaps, generating shorter tracts that can be used as a read-out for ssDNA gaps on ongoing forks. These post-replicative ssDNA gaps are formed when damaged DNA is replicated discontinuously. They can be repaired via mechanisms uncoupled from genome replication, in a process known as gap-filling or post-replicative repair. Because gap-filling mechanisms involve DNA synthesis independent of the S phase, alterations in the DNA fiber labeling scheme can also be employed to monitor gap-filling events. Altogether, these modifications of the DNA fiber assay are powerful strategies to understand how post-replicative gaps are formed and filled in the genome of human cells.
UR - http://www.scopus.com/inward/record.url?scp=85125004627&partnerID=8YFLogxK
U2 - 10.3791/63448
DO - 10.3791/63448
M3 - Article
C2 - 35188138
AN - SCOPUS:85125004627
SN - 1940-087X
VL - 2022
JO - Journal of Visualized Experiments
JF - Journal of Visualized Experiments
IS - 180
M1 - e63448
ER -