Detection of complement activation using monoclonal antibodies against C3d

Joshua M. Thurman, Liudmila Kulik, Heather Orth, Maria Wong, Brandon Renner, Siranush A. Sargsyan, Lynne M. Mitchell, Dennis E. Hourcade, Jonathan P. Hannan, James M. Kovacs, Beth Coughlin, Alex S. Woodell, Matthew C. Pickering, Bärbel Rohrer, V. Michael Holers

Research output: Contribution to journalArticlepeer-review

64 Scopus citations


During complement activation the C3 protein is cleaved, and C3 activation fragments are covalently fixed to tissues. Tissue-bound C3 fragments are a durable biomarker of tissue inflammation, and these fragments have been exploited as addressable binding ligands for targeted therapeutics and diagnostic agents. We have generated cross-reactive murine monoclonal antibodies against human and mouse C3d, the final C3 degradation fragment generated during complement activation. We developed 3 monoclonal antibodies (3d8b, 3d9a, and 3d29) that preferentially bind to the iC3b, C3dg, and C3d fragments in solution, but do not bind to intact C3 or C3b. The same 3 clones also bind to tissue-bound C3 activation fragments when injected systemically. Using mouse models of renal and ocular disease, we confirmed that, following systemic injection, the antibodies accumulated at sites of C3 fragment deposition within the glomerulus, the renal tubulointerstitium, and the posterior pole of the eye. To detect antibodies bound within the eye, we used optical imaging and observed accumulation of the antibodies within retinal lesions in a model of choroidal neovascularization (CNV). Our results demonstrate that imaging methods that use these antibodies may provide a sensitive means of detecting and monitoring complement activation-associated tissue inflammation.

Original languageEnglish
Pages (from-to)2218-2230
Number of pages13
JournalJournal of Clinical Investigation
Issue number5
StatePublished - May 1 2013


Dive into the research topics of 'Detection of complement activation using monoclonal antibodies against C3d'. Together they form a unique fingerprint.

Cite this