TY - JOUR
T1 - Detection of a mosaic CDKL5 deletion and inversion by optical genome mapping ends an exhaustive diagnostic odyssey
AU - Undiagnosed Diseases Network
AU - Cope, Heidi
AU - Barseghyan, Hayk
AU - Bhattacharya, Surajit
AU - Fu, Yulong
AU - Hoppman, Nicole
AU - Marcou, Cherisse
AU - Walley, Nicole
AU - Rehder, Catherine
AU - Deak, Kristen
AU - Alkelai, Anna
AU - Vilain, Eric
AU - Shashi, Vandana
AU - Acosta, Maria T.
AU - Adam, Margaret
AU - Adams, David R.
AU - Agrawal, Pankaj B.
AU - Alejandro, Mercedes E.
AU - Alvey, Justin
AU - Amendola, Laura
AU - Andrews, Ashley
AU - Ashley, Euan A.
AU - Azamian, Mahshid S.
AU - Bacino, Carlos A.
AU - Bademci, Guney
AU - Baker, Eva
AU - Balasubramanyam, Ashok
AU - Baldridge, Dustin
AU - Bale, Jim
AU - Bamshad, Michael
AU - Barbouth, Deborah
AU - Bayrak-Toydemir, Pinar
AU - Beck, Anita
AU - Beggs, Alan H.
AU - Behrens, Edward
AU - Bejerano, Gill
AU - Bennet, Jimmy
AU - Berg-Rood, Beverly
AU - Bernstein, Jonathan A.
AU - Berry, Gerard T.
AU - Bican, Anna
AU - Bivona, Stephanie
AU - Blue, Elizabeth
AU - Bohnsack, John
AU - Bonnenmann, Carsten
AU - Sessions Cole, F.
AU - Pak, Stephen
AU - Schedl, Timothy
AU - Shin, Jimann
AU - Solnica-Krezel, Lilianna
AU - Wambach, Jennifer
N1 - Publisher Copyright:
© 2021 The Authors. Molecular Genetics & Genomic Medicine published by Wiley Periodicals LLC.
PY - 2021/7
Y1 - 2021/7
N2 - Background: Currently available structural variant (SV) detection methods do not span the complete spectrum of disease-causing SVs. Optical genome mapping (OGM), an emerging technology with the potential to resolve diagnostic dilemmas, was performed to investigate clinically-relevant SVs in a 4-year-old male with an epileptic encephalopathy of undiagnosed molecular origin. Methods: OGM was utilized to image long, megabase-size DNA molecules, fluorescently labeled at specific sequence motifs throughout the genome with high sensitivity for detection of SVs greater than 500 bp in size. OGM results were confirmed in a CLIA-certified laboratory via mate-pair sequencing. Results: OGM identified a mosaic, de novo 90 kb deletion and inversion on the X chromosome disrupting the CDKL5 gene. Detection of the mosaic deletion, which had been previously undetected by chromosomal microarray, an infantile epilepsy panel including exon-level microarray for CDKL5, exome sequencing as well as genome sequencing, resulted in a diagnosis of X-linked dominant early infantile epileptic encephalopathy-2. Conclusion: OGM affords an effective technology for the detection of SVs, especially those that are mosaic, since these remain difficult to detect with current NGS technologies and with conventional chromosomal microarrays. Further research in undiagnosed populations with OGM is warranted.
AB - Background: Currently available structural variant (SV) detection methods do not span the complete spectrum of disease-causing SVs. Optical genome mapping (OGM), an emerging technology with the potential to resolve diagnostic dilemmas, was performed to investigate clinically-relevant SVs in a 4-year-old male with an epileptic encephalopathy of undiagnosed molecular origin. Methods: OGM was utilized to image long, megabase-size DNA molecules, fluorescently labeled at specific sequence motifs throughout the genome with high sensitivity for detection of SVs greater than 500 bp in size. OGM results were confirmed in a CLIA-certified laboratory via mate-pair sequencing. Results: OGM identified a mosaic, de novo 90 kb deletion and inversion on the X chromosome disrupting the CDKL5 gene. Detection of the mosaic deletion, which had been previously undetected by chromosomal microarray, an infantile epilepsy panel including exon-level microarray for CDKL5, exome sequencing as well as genome sequencing, resulted in a diagnosis of X-linked dominant early infantile epileptic encephalopathy-2. Conclusion: OGM affords an effective technology for the detection of SVs, especially those that are mosaic, since these remain difficult to detect with current NGS technologies and with conventional chromosomal microarrays. Further research in undiagnosed populations with OGM is warranted.
KW - copy number variants
KW - epilepsy
KW - mosaicism
KW - optical genome mapping
KW - structural variants
UR - http://www.scopus.com/inward/record.url?scp=85105141512&partnerID=8YFLogxK
U2 - 10.1002/mgg3.1665
DO - 10.1002/mgg3.1665
M3 - Article
C2 - 33955715
AN - SCOPUS:85105141512
SN - 2324-9269
VL - 9
JO - Molecular Genetics and Genomic Medicine
JF - Molecular Genetics and Genomic Medicine
IS - 7
M1 - e1665
ER -