TY - GEN
T1 - Detect overlapping communities via ranking node popularities
AU - Di, Jin
AU - Wang, Hongcui
AU - Dang, Jianwu
AU - He, Dongxiao
AU - Zhang, Weixiong
N1 - Publisher Copyright:
© 2016, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2016
Y1 - 2016
N2 - Detection of overlapping communities has drawn much attention lately as they are essential properties of real complex networks. Despite its influence and popularity, the well studied and widely adopted stochastic model has not been made effective for finding overlapping communities. Here we extend the stochastic model method to detection of overlapping communities with the virtue of autonomous determination of the number of communities. Our approach hinges upon the idea of ranking node popularities within communities and using a Bayesian method to shrink communities to optimize an objective function based on the stochastic generative model. We evaluated the novel approach, showing its superior performance over five state-of-the-art methods, on large real networks and synthetic networks with ground-truths of overlapping communities.
AB - Detection of overlapping communities has drawn much attention lately as they are essential properties of real complex networks. Despite its influence and popularity, the well studied and widely adopted stochastic model has not been made effective for finding overlapping communities. Here we extend the stochastic model method to detection of overlapping communities with the virtue of autonomous determination of the number of communities. Our approach hinges upon the idea of ranking node popularities within communities and using a Bayesian method to shrink communities to optimize an objective function based on the stochastic generative model. We evaluated the novel approach, showing its superior performance over five state-of-the-art methods, on large real networks and synthetic networks with ground-truths of overlapping communities.
UR - http://www.scopus.com/inward/record.url?scp=85007271657&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:85007271657
T3 - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
SP - 172
EP - 178
BT - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
PB - AAAI press
T2 - 30th AAAI Conference on Artificial Intelligence, AAAI 2016
Y2 - 12 February 2016 through 17 February 2016
ER -