TY - JOUR
T1 - Designing filters for fast-known NcRNA identification
AU - Sun, Yanni
AU - Buhler, Jeremy
AU - Yuan, Cheng
N1 - Funding Information:
This work was supported by US National Science Foundation CAREER Award DBI-0953738.
PY - 2012
Y1 - 2012
N2 - Detecting members of known noncoding RNA (ncRNA) families in genomic DNA is an important part of sequence annotation. However, the most widely used tool for modeling ncRNA families, the covariance model (CM), incurs a high-computational cost when used for genome-wide search. This cost can be reduced by using a filter to exclude sequences that are unlikely to contain the ncRNA of interest, applying the CM only where it is likely to match strongly. Despite recent advances, designing an efficient filter that can detect ncRNA instances lacking strong conservation while excluding most irrelevant sequences remains challenging. In this work, we design three types of filters based on multiple secondary structure profiles (SSPs). An SSP augments a regular profile (i.e., a position weight matrix) with secondary structure information but can still be efficiently scanned against long sequences. Multi-SSP-based filters combine evidence from multiple SSP matches and can achieve high sensitivity and specificity. Our SSP-based filters are extensively tested in BRAliBase III data set, Rfam 9.0, and a published soil metagenomic data set. In addition, we compare the SSP-based filters with several other ncRNA search tools including Infernal (with profile HMMs as filters), ERPIN, and tRNAscan-SE. Our experiments demonstrate that carefully designed SSP filters can achieve significant speedup over unfiltered CM search while maintaining high sensitivity for various ncRNA families. The designed filters and filter-scanning programs are available at our website: www.cse.msu.edu/~yannisun/ssp/.
AB - Detecting members of known noncoding RNA (ncRNA) families in genomic DNA is an important part of sequence annotation. However, the most widely used tool for modeling ncRNA families, the covariance model (CM), incurs a high-computational cost when used for genome-wide search. This cost can be reduced by using a filter to exclude sequences that are unlikely to contain the ncRNA of interest, applying the CM only where it is likely to match strongly. Despite recent advances, designing an efficient filter that can detect ncRNA instances lacking strong conservation while excluding most irrelevant sequences remains challenging. In this work, we design three types of filters based on multiple secondary structure profiles (SSPs). An SSP augments a regular profile (i.e., a position weight matrix) with secondary structure information but can still be efficiently scanned against long sequences. Multi-SSP-based filters combine evidence from multiple SSP matches and can achieve high sensitivity and specificity. Our SSP-based filters are extensively tested in BRAliBase III data set, Rfam 9.0, and a published soil metagenomic data set. In addition, we compare the SSP-based filters with several other ncRNA search tools including Infernal (with profile HMMs as filters), ERPIN, and tRNAscan-SE. Our experiments demonstrate that carefully designed SSP filters can achieve significant speedup over unfiltered CM search while maintaining high sensitivity for various ncRNA families. The designed filters and filter-scanning programs are available at our website: www.cse.msu.edu/~yannisun/ssp/.
KW - Algorithms for data and knowledge
KW - Bioinformatics (genome or protein)
KW - Feature extraction or construction
KW - Formal languages
UR - http://www.scopus.com/inward/record.url?scp=84859187847&partnerID=8YFLogxK
U2 - 10.1109/TCBB.2011.149
DO - 10.1109/TCBB.2011.149
M3 - Article
C2 - 22084145
AN - SCOPUS:84859187847
SN - 1545-5963
VL - 9
SP - 774
EP - 787
JO - IEEE/ACM Transactions on Computational Biology and Bioinformatics
JF - IEEE/ACM Transactions on Computational Biology and Bioinformatics
IS - 3
M1 - 6081849
ER -